Chandigarh Engineering College Landran, Mohali

Department of Applied Sciences

Assignment No 2

Subject and Subject code: Mathematics -1/BTAM-104-18 Semester 1st (CSE/IT)

Course Outcomes

CO1: analyze various problems by using fundamental theorems.

CO2: apply differential and integral calculus to evaluate definite, improper integrals and its applications.

CO3: deal with the concept of linear dependence, independence and linear transformations.

CO4: solve the linear equations by applying the knowledge of matrix algebra.

Assignment related to COs		
	SECTION - A (2Marks Each)	
Q1.	Evaluate $\int_0^{\pi/2} (2 \log \sin x - \log \sin 2x) dx$ by using properties of definite integration	CO-2
Q2.	Evaluate the improper integral $\int_1^\infty \frac{1}{x\sqrt{x^2-1}} dx$	CO-2
Q3.	Define Beta function and show that it is symmetric.	CO-2
Q4.	Find basis and dimension of subspace W of R ³ (R)where	CO-3
	$W = \{(r,s,t)/ \ t = s + r, \ s = 2r, \ r,s,t \in R\}$	
Q5.	Show that set $B = \{(2,1,4), (1,-1,2), (3,1,-2) \text{ is a Basis of } \mathbb{R}^3.$	CO-3
	SECTION – B (4 Marks Each)	
Q6.	Find the Volume of the solid formed by revolving the Astroid $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ about $y - axis$.	CO-2
Q7.	Derive the relationship between Beta and Gamma function.	CO-2
Q8.	Prove that $\beta(m,n) = [(m-1)!.(n-1)!]/(m+n-1)!$; m,n>0 and m,n belongs to Z	CO-2
Q9.	Let W be a sub-space generated by the polynomials $f_1 = x^3 - 2x^2 + 4x + 1$, $f_2 = 2x^3 - 3x^2 + 9x - 1$, $f_3 = x^3 + 6x - 5$, $f_4 = 2x^3 - 5x^2 + 7x + 5$	CO-3
Q10.	Let W_1 and W_2 be two subspaces of $R^3(R)$ generated by $\left\{(1,3,-2,2,3),(1,4,-3,4,2),\left(1,\frac{3}{2},\frac{-1}{2},-1,\frac{9}{2}\right)\right\}$ and $\left\{(1,3,0,2,1),(1,5,-6,6,3),\left(1,\frac{5}{2},\frac{3}{2},1,\frac{1}{2}\right)\right\}$ respectively. Find dimensions of (i) W_1 (ii) W_2 (iii) W_1+W_2 (iv) $W_1\cap W_2$	CO-3