Chandigarh Engineering College Landran, Mohali

Department of Applied Sciences

Assignment No 1

Subject and Subject code: Mathematics -1/BTAM-104-18 Semester 1st (CSE/IT)

Course Outcomes

CO1: analyze various problems by using fundamental theorems..

CO2: apply differential and integral calculus to evaluate definite, improper integrals and its applications.

CO3: deal with the concept of linear dependence, independence and linear transformations.

CO4: solve the linear equations by applying the knowledge of matrix algebra.

	Assignment related to COs	Relevance to CO No.
	SECTION - A (2Marks Each)	
Q1.	(a) What is the rank of a singular Matrix of order n.	CO-4
	(b) Define Skew symmetric matrix with the help of an example.	
Q2.	Find inverse of $A = \begin{bmatrix} 1 & 1 & 0 \\ 2 & -3 & 0 \\ 3 & -3 & 1 \end{bmatrix}$ using Gauss Jordan method. Also find the Rank of the matrix.	CO-4
Q3.	Are the vectors $(1,2,1)$, $(2,1,4)$, $(1,8,-3)$, $(4,5,6)$ linearly dependent? If yes, find relation between them.	CO-3
Q4.	Evaluate $\begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix}$ without expanding.	CO-4
Q5.	Prove $\frac{ A }{\alpha}$ is an eigen value of adj (A)eigen vector remaining the same if α is an eigen value of A and X is corresponding Eigen vector.	CO-3
	SECTION – B (4 Marks Each)	
Q6.	Solve by Cramer's rule $5x - 7y + z = 11$, $6x - 8y - z = 15$, $3x + 2y - 6z = 7$.	CO-4
Q7.	Solve by Gauss Elimination method $x + 2y + z = 7$, $x + 3z = 11$, $2x - 3y = 1$.	CO-4

Q8.	For what values of λ does the system	CO-4
	$x+y+z=1, \ x+2y+4z=\lambda, \ x+4y+10z=\lambda^2$ has a solution. Solve it in each case.	
Q9.	Find Eigen values and Eigen vectors of $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ and hence comment whether the	CO-3
	matrix is diagonalizable or not ?	
Q10.	. Examine whether A is similar to B or not where	CO-3
	$A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix} \text{ and } B = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$	