Matrices

Matrix:A matrix is a rectangular array of numbers, algebraic symbols, or mathematical
functions, provided that such arrays are added and multiplied according to certain rules.

Order or size of Matrix: Order or size of Matrix = no. of rows X no. of columns = m X n

Where m is number of rows and n is number of columns.
Row Matrix:A matrix with one row is called a row matrix.
Column Matrix: A matrix with one column is called a row matrix.

Square matrix: A matrix is called a square matrix if the number of its rows equals the

number of columns.

Rectangular Matrix:A matrix is called a rectangular matrix if the number of its rows is not
equal to the number of columns.

Diagonal Matrix:A matrix is called a diagonal matrix if all its off-diagonal elements are equal
to zero, but at least one of the diagonal elements is nonzero:

Identity Matrix: an identity matrix is a diagonal matrix whose diagonal elements are equal
to unity.

Zero Matrix: A matrix is called a zero-matrix (or 0-matrix) if all its elements are equal to
zero.

Transpose of Matrix: A matrix obtained from matrix A by interchanging its rows and
columns is called transpose of A and is denoted by AT or A’.

1 2 1 1 1 2
eg. |11 0 3|l=]|2 0 -3
2 -3 0 1 3 0

Upper Triangular Matrix: A square matrix A is called upper triangular matrix if all the

elements below the principal diagonal are zero.
1 2 1

eg. |0 5 3
0 0 4

Lower Triangular Matrix: A square matrix A is called lower triangular matrix if all the
elements above the principal diagonal are zero.



1 0 O
eg. |1 5 O
2 -3 6

Symmetric matrix: A square matrix is called symmetric matrix if A = AT

i.e.ai]- = a]-i
1 2 3
egl2 5 6
3 6 7
SkewSymmetric matrix: A square matrix is called symmetric matrix if A = —AT
i.e. aj = —ajj. The diagonal elements of a skew-symmetric matrix are zero because a;; =

—a;; ifandonlyifa; =0

0 -2 3
eg. | 2 0 6

-3 =6 0

Matrix Addition: Only matrix of same dimension can be added. In case of matrix addition,
the corresponding elements of two similar matrices are added to each other.

1 2 1 5 -7 1 1+5 2+(=7) 1+1 6 —5 2
eg. |1 0 3|+|l6 -8 —-1|=|1+6 0+(-8) 3+(-D|=|7 -8 2
2 =3 0 3 2 —6 2+3 342 0+ (-6) 5 —1 —6

Matrix addition is both commutative and associative.

Scalar multiplication: The product of a scalar “k” and a matrixA,x, is the matrix KA, xn
each of whose entries are “k” times the corresponding entry in A, «n-

1 2 1 5x1 5%x2 5x1 5 10 5
eg. 51 0 3]=5><1 5x0 5><3]=[5 0 15]
2 -3 0 5x2 5x(-3) 5x%x0 10 —-15 0

Matrix Multiplication: Two matrices A and B can be multiplied i.e. AB is possible if number
of columns in A is equal to number of rows in B.

If order of Ais m X n and order of B is n X p, then order of ABis m X p.
Matrix multiplication is not commutative i.e. AB # BA.

Determinant: The association of a real number with square matrices of any dimension
(order) is called the determinant of the matrix. Determinants can be distinguished from a
matrix because they are always enclosed within a single set of vertical lines ' || .



Properties of Determinants:

e Let A be a square matrix of order n. The sum of product of elements of any
row ( or column) with their cofactors is always equal to |A] i.e. er‘:l a;Cy; =
|Al

e Let A be a square matrix of order n. The sum of product of elements of any
row ( or column) with the cofactors of the corresponding elements of some
other row ( or column) is always equal to 0 i.e. Z}Ll a;jCyj = 0

o |Al=|AT]

e By interchanging any two rows (or columns), the value of determinant
changes by minus sign.

e If any two rows (or columns) are identical, then |A| = 0.

e [f each element of a row (or column) is multiplied by a constant k, then value
of new determinant is k times the value of original determinant.

e |f each element of a row (or column) is multiplied by a constant k and then
added to the corresponding elements of some other row (or column), ten
value of the determinant remains unchanged.

e |If each element of a row (or column) is expressed as a sum of two or more
terms, then the determinant can be expressed as sum of two or more
determinants.

e If each elementin a row (or column) is zero, then |A| = 0.

e If A and B are two square matrices, then |AB| = |A||B|.

1 a a®
Q. Evaluate [1 b Db?| without expanding.
1 ¢ c?
1 a a?
Sol. |1 b Db?| (OperatingR, - R, —Ry,R3 = R; —Ry)
1 ¢ c?
yields |1 a a’
— |0 b—a b?%-—a?| (Takingout(b—a)and (c—a)common from R, and R3)
0 c—a c?—a?
yields 1 a a
—— (b —-2a)(c—a)|0 1 b+ al(OperatingR; - R; —R;)
0 1 c+a




1 a a2

ield
= (b—a)(c—a)[0 1 b+ al(Taking out (c —b) common from R3)
0 0 c—b
yields 1 a a2
—(b—a)(c—a)(c—b)|0 1 b + a|(Expanding along C,)
0 0 1

=(a—b)(b—c)(c—a)

1 a a%?—bc
1 b b%-ac
1 ¢ c?2—ab

Q. Evaluate without expanding.

1 a a’-—bc 1 a a2 1 a -—bc
Sol. [1 b b%2—=acl=11 b b?l+[1 b -ac
1 ¢ c?2—ab 1 ¢ c? 1 ¢ -—ab

(Taking out (—1) common from C; of second determinant)

1 a a? 1 a bc
=1 b b?—|1 b ac
1 ¢ c? 1 ¢ ab

(multiplyingR4, R,, Rz0f second determinant by a, b, c respectively)

1 a a? L a’? abc
=11 b b? ——|b b? abc|(Taking out
2 abc 2
1 ¢ c c c¢* abc

(abc) common from C; of second determinant)

1 a a? e l? a? 1 1 a a? a a’ 1
=1 b b? ~ be b b2 1/=[1 b b? —|[b b% 1
1 ¢ c2 c c2 1 1 ¢ c? c c2 1

(Interchanging C, and C; in second determinant )

1 a a2 a 1 a?
=1 b b%—|[b 1 b?
1 ¢ c2 c 1 c?

(Interchanging C; and C, in second determinant )

1 a a2 1 a a?
=1 b b%—|[1 b b?%=0
1 ¢ c? 1 ¢ c?



2

yields 1 a a

—— (b —a)(c—a)|0 1 b+ al(Taking out (c —b) common from Rj)
0 0 c—b
1 a a°

yields

—(b—-a)(c—a)(c=b)[0 1 b+a

0 0 1

(Expanding along C;)

=(a—b)(b—c)(c—a)

Inverse of Matrix

1

Let A be a square matrix. Then A™! = A

adj. A.

Note: AA"l =1=A"1A

1 3 3

Ql.Calculate A"tifA=|1 4 3]

1 3 4
1 3 3
HereA=|1 4 3‘
1 3 4

Al =1(16 —9) —3(4 —3) +3(3—4) =1 # 0. Thus A™! exists.
Cofactors of elements aj; in A are

4 3
¢ = (=D 3 4_| =7

1 3

¢z = (=12 1 4= -1
1 4

¢ = (=D 1 317 -1
3 3

o = (=% 3 4|~ -3

C2z = (=1)**2 H 3| =1
C3 = (=1)**° H 3| =

c3p = (=1)%** |3 3|

4 3



1 3
c3z = (=1)%*? |1

3
1 3
c33 = (=1)%*3 |1 4| =
7 -1 -11" [7 -3 -3
~adj.A=|-3 1 o =[-1 1 0
-3 0 1 -1 0 1
1 117 -3 -3 7 -3 =3
_1 .
A :madl'A:I_l 1 o[=]-1 1 0
-1 0 1 -1 0 1
Cramer’s Rule
Let the system of equations be
a11X + a1y + 2532 = by, a1X + a3,y + a3z = by, az1X + azyy + azzz = b
d11 A1z a13 b; a;; a3 a;; by a3
Then A= |az1 A2 Az, A;=|by az; azs|, Ay=|az by azl,
dzq Az dz3 b3 dzp, dsz3 dszq b3 dsg

B - R |
° IqutO,thenX—A,y—A,Z—A

e If A= 0 and at least oneof A4, A,, Asthen system is inconsistent i.e. has no solution.

o If A=A;= A,= A;= 0, then system has infinitely many solutions. Take any two
equations out of the three given equations and shift one of the variables, say z, on
the right hand side. Solve these two equations by Cramer’s rule to obtain x, y in
terms of z.

Q1. Solve by Cramer’srule5x — 7y +z =11,6x — 8y —z =15, 3x+ 2y — 6z =7

5 -7 1
Sol. By Cramer'sruleA=|6 —8 —1|=5(48+2)+7(-36+3)+1(12+ 18) =55
3 2 -6
11 -7 1
A =115 -8 —-1|=11(48+2)+7(-90+7)+ 1(30+ 56) =55
7 2 -6
5 11 1
A,=16 15 —-1|=5(-90+7)—-11(-36+3) + 1(42 —45) = —55
3 7 -6




5 -7 11
A;=16 —8 15[=5(—56—-30)+ 7(42—45)+ 11(12 + 24) = —-55
3 2 7
A S5 B 55 Ay =55
*“aTs YT ATss T T "TAT 55

Q2. Solve by Cramer’srule 2x—y+z=4,x+3y+2z=12, 3x+2y+3z2=10

2 -1 1
Sol. By Cramer’'srule A=11 3 2|=209-4)+1B3-6)+1(2-9) =0
3 2 3
4 -1 1
A=112 3 2[=409-4)+1(36—-20)+1(24—-30)=30+0
10 2 3

Therefore system is inconsistent and has no solution.

Matrix Inversion Method

Let the system of equations be

d11X + di12y + d13Z = bl' do1X + dryy + dp3Z = bz, dz1X + dszpy + d33Z = b3
di1 12 a13 X by
Then A =]az1 Qazz a|,X= [Yl, B = |b;
dz1 dzz ds3 Z b,

e If |A| # 0, then system has unique solution.

yields
The system can be writtenas AX=B—— X =A"'B

e If|A| = 0and (adj.A)B = 0, then system is consistent and has infinitely many
solutions.

e If|A] = 0 and (adj.A)B # 0, then system is inconsistent.
Q3. Solve by matrix inversion method x+2y+z=7, x+3z=11, 2x—3y=1

1 2 1 7 X
1 0 3,B=11,X=ly

2 =3 0 1 zZ

Sol. Here A =

|Al =1(0+9) —2(0 —6) + 1(—3 — 0) = 18 # 0. Thus system has unique solution.

Cofactors of elements aj; in A are

0 3
¢ = (=DM _3 O| =9



cip = (-2 ; g| =6
i3 = (=13 % _03 =-3
o1 = (=1)**! _23 (1) =-3
C22 = (=1)**? % (1)| = -2
o3 = (=1)**3 ; _23| =7
c3p = (1% é é =6
= (D] 1 =2
c33 = (-1)%*° 1 g =-2

9 6 -31" 9 -3 6
~adjA=|-3 -2 7| =6 -2 -2

. . 9 -3 6

-1 —_ = . — = _ _
A = m adj. A = =l © 2 2
-3 7 =2

[9 -3 6][7 L [36 2
X:A‘lB=E 6 -2 -2([11(=[18[=|1
-3 7 =211 54 3

~x=2,y=12z2=3

Rank: A matrix A is said to be of rank r if
(i) All the minors, in A, of order greater than r are zero.

(ii) There exists atleast one minor of order r in A which is non zero.

1 1 0
Q. Findrankof A=1[2 -3 0
3 -3 1

Sol. A =

1 1 0
2 -3 0

3 -3 1



1 1 0
2 -3 0[=1(-3)-12)+0=-5#0-p(A)=3
3 -3 1

Q. What is the rank of a non-singular matrix of order n?

Sol. The rank of a non-singular matrix of order n is n because the determinant of non-

singular matrix A is non-zero.

Q. If Ais a non- zero row and B is a hon- zero column matrix, show that rank AB =1.
_Xl_

X2

Sol. LetA=[y; y2 =+ Yn] andB=

(X}, ]

Then AB = [X1y1 + X2V2 + wo .. +XuVn]  Which is a singleton matrix. Hence rank AB = 1.

Linearly Dependent vectors: A set of vectors X4, X5, ... ....., X,is said to be linearly

dependent if there exist scalars o4, a5, ... ...., ay, atleast one a; non- zero, such that
O(1X1 + a2X2 + + O(an = 0

e.g. X; = (2,4)and X, = (1,2), then X; + (—2)X, = 0. Therefore X;and X; are

linearly dependent vectors.

Linearly Independent vectors: A set of vectors X;, X, ... ....., X,is said to be linearly

independent If for scalars o4, a5, ... ..., O,
o0 Xy + Xy + ot o X, =0
Implies all a; are zero.
e.g. Xy = (2,0)and X, = (0,4),
yields yields

then o;X; + a;X; = 0 — (204,40;) = 0 — a; = 0 and a, = 0. Therefore X;and X,

are linearly independent vectors.

Q. Determine whether the set {(3,2,4), (1,0,2), (1,—1,—1)} of vectors linearly
independent.



3 2 4
Sol. 11 O 2(=3004+2)-2(-1-2)+4(-1)=4+0
1 -1 -1

=~ Vectors linearly independent.
Q. Determine whether the set {(2,2,1), (1,—1,1), (1,0,1)} of vectors linearly

independent.
2 2 1

Sol. [1 -1 1f{=2(-1-0-21-D+1(0+1)=-1+#0
1 0 1

~ Vectors linearly independent.

Conditions for consistency of system of equations

Non-homogenous system of linear equations (AX=B)

i. Ifp(A:B) = p(A) = number of unknowns, the system has unique solution.

i. Ifp(A:B) = p(A) < number of unknowns, the system has an infinite number of
solutions.

iii. Ifp(A:B) # p(A), the system is inconsistent i.e. it has no solution.

Homogenous system of linear equations (AX=0)

i.  This system always has a solution X=0 called the null or trivial solution.
i. If p(A) = number of unknowns, the system has unique solution i.e. trivial
solution.

iii.  If p(A) < number of unknowns, the system has an infinite number of
solutions.

Gauss Elimination Method to solve system of equations:

i.  Convert the system to matrix form.
ii.  Convert the matrix to Echelon form (by applying row operations only).
iii.  Apply back substitution i.e. convert the matrix to system of equations.

Gauss Jordan Method to solve system of equations:

i.  Convert the system to matrix form.
ii.  Convert the matrix to Normal form (by applying row operations only).
iii.  Apply back substitution i.e. convert the matrix to system of equations.



Q. Solve the system of equationsx+y+z =3, 3x—9y + 2z =—4, 5x—3y+4z=

1 1 1:3
Sol. [A:B] = [3 -9 2:—4 (Operating R, - R, —3R;, R3 = R; —5R;)
5 -3 4:6
yields 1 1 1:3 . R,
— |0 —-12 -—-1:—13 (OperatingR, — _—12)
0 -8 -—-1:-9
11 1.3 11 13
yields 1 13 vields[g 1 1-13
—> |0 1 PERETS (Operating ,R; + 8R,) — 12:12
. —4.—-4
0 -8 —-1'-9 00 —=

Since p[A: B] = p(A) = number of unknowns, so system is consistent and has unique

solution.
. L —4 —4 yields
Applying back substitution, from R, i, %= 1
1 13 yields 13 1 _Yylelds 12
From Ry, y+—z=——> y=——-—z—> y=—=1
12 12 12 12 12

yields yields
From Ry, x+y+z=3— x+1+1=3—x=1

Hence solutionis x=1, y=1, z=1

Q. Solve the system of equations
Xx+2y +z=2, 3x+y—2z=1, 4x—3y—z=3, 2x+4y+22=4

1 2 1: 2
Sol A:B] = 3 1 -2:1 . _ _ _
ol. [A:B]= 4 -3 1+ 3 (Operating R, — 3Ry,R; —4Ry,R, — 2R,)
2 4 2: 4
1 2 1: 2
yields|g -5 -5 -5 . Ra
— o —11 -5 -_5 (Operating R2—>_5)
L0 0 0: 0
1 2 1: 2 1 2 1. 2
yields | 1 1: 1 . yields 0 1 1 1
— o —11 -5 -5 (Operating,R; + 11R,) — 00 6 6
n 0 0: 0 0 0 0 0

Since p[A: B] = p(A) = number of unknowns, so system is consistent and has unique

solution.



yields
Applying back substitution, fromR;, 6z=6—— z =1

yields yields
From R, y+z=1—>y=1-2z2—>y=1-1=0

yields yields
From Ry, x+2y+z=2— x+0+1=2—x=1

Hence solutionis x=1,y=0,z=1

Q. Find the valuesof o for unique solution and infinitely many solutions. Hence
solve the systemineachcase. 3x—y+4z=3, x+2y—3z=-2, 6x+5y+
az = —3

3 -1 4: 3
Sol.[A:B] =|1 2 —3: —2|(OperatingR; < R;)
6 5 a: —3

yielas [L 2 —3 —2

— |3 -1 4: 3| (OperatingR; —3R{,R3 —6R;)
6 5 a: —3

yields |1 2 -3 . =2

— |0 -7 13 : 9| (Operating,R; —R;)
0 -7 a+18: 9

yields 1 2 —3: =2

—|0 -7 13 : 9
0 0 oa+5 0

(i) system is consistent and has unique solution if p[A: B] = p(A) = number of unknowns

. yields
ie. a+5#0— a# -5

1 2 -3: =2
When a+5+#0,[A:B]=|0 -7 13 : 9
0 0 oa+5 0

ield
Applying back substitution, from R;, (a+5)z=0 i z=0

yields yields -9
From R,, =7y +13z2=9—— -7y =9 — y=-

yields 18 yields 4
From Ry, x+2y—-3z=-2— X——= —2—>x=;
. . 4 -9
Hence solutionis x = Y=oz = 0

(i) system is consistent and has infinitely many solutions if



ield
p[A: B] = p(A) < number of unknowns ie. a+5=0"> q=-5

1 2 -3 =2
Whena+5=0,[A:B]=|0 -7 13: 9
0 O 0: O

Let z=t Applying back substitution,

ield ield ~
From R,, —7y+132=93if_7y=9_13ty1e s y=13; 9

yields 26t-18 yields 5t-18
From Ry, x+2y—3z=-2 X+— - 3t=-2—>x+ =-2
yields 4-5t
—_— X = —
7
L 4-5t 13t-9
Hence solutionis x = o y=——z=t

Orthogonal matrix: A square matrix A is said to be orthogonal if

AAT = ATA = 1.
oz 2
egA=:2 1 -2
2 -2 1

Unitary matrix: A square matrix A is said to be Unitary if
APA = AA® =1

where A® = (K)T

11 2 2
e.g.A=§2 1 -2

2 =2 1
Note: Every orthogonal matrix is unitary.
Hermitian matrix: A square matrix A is said to be Hermitian matrix if

Aa =A ie. ajj =a_]1

Diagonal elements of a Hermitian matrix are real numbers.

1 24+3i 5-—6i
eg. A= |2—-3i 2 9 — 6i
54+46i 94+61i -—11



Skew Hermitian matrix: A square matrix A is said to be skew Hermitian matrix if
A‘? = —A ie. aij = —a_]l

Diagonal elements of a skew Hermitian matrix are either zero or purely imaginary
numbers.

1 2+3i —-5-—6i
eg A= |-2+3i 2 —9 + 6i
5—6i 9+46i —-11

Similar matrices: A square matrix A is said to be similar to a square matrix B if there exists
an invertible matrix P such that A = P™!BP. P is called similarity matrix. This relation of
similarity is a symmetric relation.

Cayley Hamilton theorem: Every square matrix satisfies its own characteristic equation.

Eigen values and Eigen Vectors: Let A be a square matrix. Then the equation determinant
(A — al) =0 is called characteristic equation of A. The roots of characteristic equation of A
are called Eigen values or latent roots of matrix A.

A column vector X satisfying the equation AX = aX i.e. (A — al)X = 0 is called Eigen vector
or latent vector of matrix A corresponding to eigen value a.

Diagonalizable matrix: A square matrix A is said to be diagonalizable if there exists an
invertible matrix P such that

P™1BP =D
Where D is a diagonal matrix and the diagonal elements of D are Eigen values of A.

1. The characteristics equation of a matrix A is t>~t—1=0, then determine A™.
Sol. By Cayley Hamilton theorem, every square matrix satisfies its characteristic equation.
Therefore A2-A-1=0
or A%-A=1
Premultipying both sides by A
A-1=A1

2. Prove eigen value of a Hermitian matrix is real.

Sol. Let A be a Hermitian matrix. Therefore A = A — — — — — — D

Let o be eigen value of A and X be the corresponding non-zero eigen vector. Then



ield ield ield
AX = aX o5 (AX)® = (aX)® 1o XOAP = aX® Lo XPA = @X® (using (L))
Post multiplying both sides by X, we get

X8 (AX) = a(X°X) 708 X0 oX = a(X%X) o« X8X) = a(X°X) =g

Hence a is a real number. Therefore Eigen value of a Hermitian matrix is real.

1. Prove 2 isan eigen value of adj (A)eigen vector remaining the same if a is an eigen value of A and X

o

is corresponding Eigen vector.
Sol. Let A be a square matrix— — — — — — (D
Let a be eigen value of A and X be the corresponding non-zero eigen vector. Then
AX = aX (using (1))

Pre- multiplying both sides by adj (A), we get

adj (A) (AX) = adj (A)aX o (adj (A)A)X = a(adj (A)X) 1o |AIX = a(adj (A)X)

adj (A)X = Al
J 04

Hence % is an eigen value of adj (A) and X is corresponding Eigen vector.

2. Prove that product of two orthogonal matrices is orthogonal matrix
Sol. Let A and B be two orthogonal matrices. Therefore

AAT = ATA=T1and BBT =B"™B =1

Now (AB)(AB)T = ABBTAT = AIAT = AAT =1 and
(AB)T(AB) = BTAT AB = BIBT =BBT =]

Hence AB is an orthogonal matrix. Therefore product of two orthogonal matrices is orthogonal

matrix.
3. Prove that transpose of an orthogonal matrix is orthogonal matrix.
Sol. Let A be orthogonal matrix. Therefore

AAT = ATA =1

Now AT(AT)T = ATA =1 and
(AT)TAT=AAT = |

Hence AT is an orthogonal matrix

Therefore transpose of an orthogonal matrix is orthogonal matrix.



4. Prove that inverse of an orthogonal matrix is an orthogonal matrix.
Sol. Let A be orthogonal matrix. Therefore

AAT = ATA =1

Now A'(AHT=A1AD)1=(@ATA) 1 =1"1=] and
(A HTA 1=(AT) 1A = (AAT) 1 =1 =]

Hence A~ is an orthogonal matrix
Therefore inverse of an orthogonal matrix is orthogonal matrix.
5. Prove that determinant of an orthogonal matrix is +1.
Sol. Let A be orthogonal matrix. Therefore

AAT = ATA =1

Taking determinant on both sides

ield. ield ield ield
IAAT] = [1] 555 (AT = 155 |AjA = 1 55 A = 155 A = 41

(Because |CD| =|C||D|, |I] =1, |A]=|AT])
6. Prove that inverse of a unitary matrix is an unitary matrix.
Sol. Let A be unitary matrix. Therefore

AA = AA® =1 where A° = (&)

Now A~1(A"1)® = A=1(A®)™ = (A°A) ' =11=1 and
(A)PA1=(A%) At = (AA®) T =17t =1

Hence A~ is an orthogonal matrix

Therefore inverse of an orthogonal matrix is orthogonal matrix.

7. State and prove Cayley Hamilton theorem.
Sol. Statement: Every square matrix satisfies its own characteristic equation.

Proof: Let A be a square matrix of order n and its characteristic equation be |A —Al| = 0

e, (—1)"A" 4+ a, A 4 a4 e +a,=0
Required to be proved: (—1)"A™ + a; A" 1 + a,A" 2 4 .o L +a,l =
Here A is an eigen value of A.

ield
[A — AI] is a matrix of order n e adj. (A — Al) is a matrix of order (n-1).
Therefore we can write adj. (A — Al) = PAM 1 + P,ART2  ooe L + P, where

PPy, P, are square matrices.

ield
Also Aadj.A) = [A]l 255 (A — ADadj. (A — Al) = |A — Al|I

yields

— (A—=AD[PAY L+ P,ART2 4 oee L + P,]= [(—D"A" + a, A" + 2, A2 4 -oe L +a,]l

Comparing coefficients of like powers of A, we get



=P = (=D

AP, — P, = a1
AP, — P; = a,l
AP; — P, = a5l
......................... (and so on)

APy =Py =ap 41
AP, = a,l
Pre-multiplying these equations by A", A"~1, AR2

adding, we get 0 = (—1)"AP + 2, A" + a,A"2 + ...

...... + ayl
yields
— (—1)"A" + a; AP 4 2, AN e +a,l=
(Hence proved).
1 0 -1
8. Find characteristic equationof A=[1 2 1
2 2 3
1 0 -1
So.,A=1[1 2 1
2 2 3
o . . yields 1-«a 0 -1
Characteristic equationof Ais [A—al| =0—— | 1 2—a 1 [=0
2 2 3—a
ield
T a® — 602 + 1la—6=0
1 0 0
9. IsA=|0 3 —1]diagonalizable?
0 -1 3
1 0 0
So.,A=|0 3 -1
0 -1 3
.. . . yields l1-a 0 0
Characteristic equationof Ais |[A—al| =0—— | 0 3—a -1 (=0
0 -1 3-«

ield ield
O =70 +140—8 =0 S a = 1,24

Since A has three distinct Eigen values, . it has three linearly independent Eigen vectors. Hence A

A is diagonalizable.

10. Verify Cayley Hamilton theorem for A = [é ;L] Hence find A~1. Also find Eigen values and vectors
of A



Sol. A = [;

yields |1 — 4

Characteristic equation of Ais |A —ol| = 0 — 3 9— ol = 0
1d 1d
P 2 —30—10 =0 S q = —2,5
By Cayley Hamilton theorem A2 —3A—101=0 ............c.vervnnnnnnn. *)
2 _[1 4111 41_[13 12
NOWA_[3 2”3 2]_[9 16l
. A2 13 12 —-12 —-10 01_10 O
“ AT 3A o 16" I 0 Sl =l o
-~ Cayley Hamilton theorem is verified for given matrix A.
Lo . yields
Multiplying both sides of (*) by A™*, we get A—31=10A"1 — A1 = 1—0[ 3 _1]

X
LetX, = [y]be the Eigen vector of A corresponding to Eigen value o« = —2.

T, =075 - 2 =05 3 7] =[0)

yields yields y

—3x+4y=0,3x+4y = 0—>—4=3

v Xy = [_34] is the Eigen vector of A corresponding to Eigen value o = —2.

LetX, = [;]be the Eigen vector of A corresponding to Eigen value o = 5.
yields yields 0
A —al]X, = 0155 [A— (5)I]X, = 0 s [ ; _3] [y] [ ]

yields yields yields g y

—> —4x+4y=0,3x—-3y=0—ox=y — =7

w X, = [ﬂ is the Eigen vector of A corresponding to Eigen value o = 5.

2 -1 1
11. Verify Cayley Hamilton theorem for A=|—1 2 —1/[. Hence find A~2.
1 -1 2
2 -1 1
Sol. A=|-1 2 -1
1 -1 2
s |2—a -1 1
Characteristic equation of Ais [A —al| =0 == -1 2—-a -11|=0
1 -1 2-a
yields
—sal—-6a2+9x—4=0
By Cayley Hamilton theorem A3 — 6A2+9A —41=0 ................e...o. )
2 -1 1
LHSA%?=AA= |- 2 -1 —1
1 -1 2




A3 = AAA =

6 -5 5 2 -1 1 22 =21 21
-5 6 =5||-1 2 -1|=|-21 22 =21
5 -5 6 1 -1 2 21 =21 22

Hence A3 — 64% + 94 — 41

22 —21 2 -1 17 1 0 0
=[—21 —21]—6[ +9(-1 2 -1 —4[0 1 0]
21 =21 1 -1 21 0 0 1
22—-36+18—4 —-21+30-9 21-30+9 ] 0 0 O
=l -21+30-9 22—-36+18—-4 —-21+30-9 =IO 0 Ol
21-30+9 —-21+30-9 22—-36+ 18 — 41 0 0 O

Hence Cayley Hamilton theorem is verified for the given matrix A
From(i), 41 = A3 — 6A% + 94

Multiplying both sides by A~%, we get

1 1{f6 -5 5 2 -1 1 9 0 0
A‘1=Z[A2—6A+91]=Z -5 6 =5|—6|-1 2 -—=1|+]0 9 0
5 -5 6 1 -1 2 0 0 9
3 1 -1
=—{1 3 1
-1 1 3
3 1 -1
12. Find Eigen values and vectorsof A = -2 1 2]
0o 1 2
3 1 -1
Sol.A=|-2 1 2]
0o 1 2
yleldsg_a 1 -1
Characteristic equationof Ais|[A—al| =0— | -2 1—a«a 2 |=0
0 1 2—a

yields ields
—a®—6a’+1la—6=0 e a= 1,2,3 are Eigen values of given matrix.

LetX, = [y]be the Eigen vector of A corresponding to Eigen value ¢ = 1.
yields yields -1
c[A-—allX, =0—[A-I]X;,=0—|-2 0 2 ||y|=]o0

yields
— 2x+y—z=0,-2x+2z=0,y+z=0

) ) x 7 yields 5 7z yields y z
From first two equatlons, S _1y >~ = 51 L A -—— - = Y= 1

0 2 2 =2 -2 0

1
—1] is the Eigen vector of A corresponding to Eigen value a = 1.
1

“ X1 =




X
Let X, = [y]be the Eigen vector of A corresponding to Eigen value a = 2.
Z

yields yields 1 1 -1 0
c[A-allX,=0— [A- X, =0—|-2 -1 2 ||y|=|o0
0 1 01tz 0

yields
— x+y—z=0,-2x—-y+2z=0,y=0

. . yields
From first two equations, ——5 = =>4 = 1— f: % - %
-1 2 2 =2 -2 -1
1
~ X, =|0]| isthe Eigen vector of A corresponding to Eigen value a = 2.
1

X
Let X5 = [y]be the Eigen vector of A corresponding to Eigen value a = 3.
Z

yields yields 0 1 -1 0
c[A=allX;=0—[A-Q)X;=0—|-2 -2 2 ||¥|=|0
0 1 11tz 0

yields yields
—> y—z=0,-2x-2y+2z2=0,y-z=0—>y—-2z=0,-2x—-2y+2z=0

x y z  yields 4 y zyields x o z
P T IT ST 070 1 02 2 o 1 1
-2 2 2 =2 -2 =2
0
~ X5 =|[1| isthe Eigen vector of A corresponding to Eigen value a = 2.
1
1 1 0
Find Eigen values and vectorsof A=10 1 1
0 0 1
1 1 0
0 1 1
0 0 1
. . ) yieas [L —a 1 0
Characteristic equation of Ais |[A —al| =0 — 1—«a 1 |=0
0 0 1-a

yields 3 yields } ) A
— (1 — a)* — a = 1,1,1 are Eigen values of given matrix.

X
Let X; = [y] be the Eigen vector of A corresponding to Eigen value a = 1.
Z

yields yields 0 1 0] 0
s [A—allX, =0— [A-DIX,=0—> |0 0 1f|y[=]|0
0 0 01tz 0

yields
— y=0,z2=0. Takex =1

1
Ol is the Eigen vector of A corresponding to Eigen value ¢ = 1.
0

e X1=




14. Examine whether the following matrix is diagonalizable. If so, obtain the matrix P such that P~1AP is

-2 2 =3

adiagonal matrixA=|2 1 -6

-1 -2 0
-2 2 =3
Sol.A=|2 1 -6
-1 -2 0

yields —2-a 2 -3
Characteristic equation of Ais |[A —al| =0 — 2 1-a —-61]=0
-1 -2 0—a

ylelds yields . . .
— —(a+3)(a+3)(a—5) =0— a=-3,-3,5 are Eigen values of given matrix.

X
Let X, = [y] be the Eigen vector of A corresponding to Eigen value o« = —3.
ields 1
. [A—aI]X1—0—>[A—( 3)1]X1—0—> 2 4 -6flyl=10
-1
(Operating R2 d Rz - 2R1, R3 4 R3 + Rl)

yields _3
— 0 0

yield

—>x+2y 3z=0

yields yields , 7

Choose y—0—> x=3z2=0—>2=

3
~ X = Ol is the first Eigen vector of A corresponding to Eigen value a = —3.
1
ields yields y
Choose z = 0 s x+2y—0—>—2=I
-2
~ X, =| 1 | isanother Eigen vector of A corresponding to Eigen value a = —3.
0

Let X5 = [y]be the Eigen vector of A corresponding to Eigen value a = 5.

yields yields =7 2 =31 * 0
c[A—allX;=0—[A-O)I]X;=0—>| 2 -4 —6||y|=]|0
-1 -2 -=5llz 0
yields
— —7x+2y—3z=0,2x—4y—-6z2=0,—x—2y—5z=0
. : : x _y oz yelds y .,  gyleldsy y 4
. from first two equationswe get , 5——=—="—===— ST TEmTn it LTo
-4 -6 -6 2 2 -4
1
~ X3 = 2 | isthe Eigen vector of A corresponding to Eigen value o = 5.
-1

~ Modal Matrix P = [ 1 0 2



-2 3 1
[Pl=[1 0 2 |=8 =+ 0.Hence vectors are linearly independent and the given matrix is
0 1 -1

Diagonalizable.

P_I_Adj.P_l[_lz ‘2* g]
Pl 811 2 3

L -2 4 671[-2 2 -31[-2 3 1
Diagonal Matrix =D = P71AP = ;1 2 5 ] [ 2 1 —6] [ 1 0 2 l
1 2 -31l-1 -2 0 0o 1 -1
1

-24 0 011—-2 3 -3 0 0
0 -24 0|1 O 2(|=10 -3 O
0 0 40ll0 1 -1 0 0 5

15. Let T be a linear transformation defined b LIy 2 ) 0 1
' y T[(l 1)]_ 2l T[(1 1)]

1 1 -1
() 1G D1=(2) - #1G D1=( 2 pems 16 3]
Sol.The matrices (1 D ((1) D ((1) (1)) (g (1)) are linearly independent and hence form a

basis in the space of 2 x 2 matrices. We write for any scalars o4, a,, a3, a4, not all zero

(g 2)2“1(2 1)+a2((1) D+a3((1) (1))+a4(8 (1))2[0(1+§:+a3 a1+gzizi+a4]

@]

Comparing the elements and solving the resulting system of equations, we get a; = 4, a,
1,03 = =2, a, = 5. Since T is a linear transformation,

¢ D=atl( Dt Dot e T[S )

)G



