
Matrices 

 

Matrix:A matrix is a rectangular array of numbers, algebraic symbols, or mathematical 

functions, provided that such arrays are added and multiplied according to certain rules.  

Order or size of Matrix: Order or size of Matrix = no. of rows × no. of columns = m × n 

Where m is number of rows and n is number of columns. 

Row Matrix:A matrix with one row is called a row matrix. 

Column Matrix: A matrix with one column is called a row matrix. 

Square matrix: A matrix is called a square matrix if the number of its rows equals the 

number of columns. 

Rectangular Matrix:A matrix is called a rectangular matrix if the number of its rows is not 

equal to the number of columns. 

Diagonal Matrix:A matrix is called a diagonal matrix if all its off-diagonal elements are equal 
to zero, but at least one of the diagonal elements is nonzero: 

aij = 0 if i ≠ j 

Identity Matrix: an identity matrix is a diagonal matrix whose diagonal elements are equal 
to unity. 

Zero Matrix: A matrix is called a zero-matrix (or 0-matrix) if all its elements are equal to 
zero. 

Transpose of Matrix: A matrix obtained from matrix A by interchanging its rows and 

columns is called transpose of A and is denoted by AT or A′.  

e.g.  [
1 2 1
1 0 3
2 −3 0

] = [
1 1 2
2 0 −3
1 3 0

] 

Upper Triangular Matrix: A square matrix A is called upper triangular matrix if all the 

elements below the principal diagonal are zero. 

e.g.  [
1 2 1
0 5 3
0 0 4

] 

Lower Triangular Matrix: A square matrix A is called lower triangular matrix if all the 

elements above the principal diagonal are zero. 



e.g.  [
1 0 0
1 5 0
2 −3 6

] 

Symmetric matrix: A square matrix is called symmetric matrix if A = AT 

i.e.aij = aji 

e.g.[
1 2 3
2 5 6
3 6 7

] 

SkewSymmetric matrix: A square matrix is called symmetric matrix if A = −AT 

i.e.   aij = −aji. The diagonal elements of a skew-symmetric matrix are zero because aii =

−aii  if and only if aii = 0 

e.g. [
0 −2 3
2 0 6
−3 −6 0

] 

 

Matrix Addition: Only matrix of same dimension can be added. In case of matrix addition, 

the corresponding elements of two similar matrices are added to each other.  

e.g.  [
1 2 1
1 0 3
2 −3 0

] + [
5 −7 1
6 −8 −1
3 2 −6

] = [
1 + 5 2 + (−7) 1 + 1
1 + 6 0 + (−8) 3 + (−1)

2 + 3 −3 + 2 0 + (−6)
] = [

6 −5 2
7 −8 2
5 −1 −6

] 

Matrix addition is both commutative and associative.  

Scalar multiplication: The product of a scalar “k” and a matrixAm×n is the matrix kAm×n 

each of whose entries are “k” times the corresponding entry in Am×n. 

e.g.  5 [
1 2 1
1 0 3
2 −3 0

] = [
5 × 1 5 × 2 5 × 1
5 × 1 5 × 0 5 × 3
5 × 2 5 × (−3) 5 × 0

] = [
5 10 5
5 0 15
10 −15 0

] 

Matrix Multiplication:  Two matrices A and B can be multiplied i.e. AB is possible if number 

of columns in A is equal to number of rows in B. 

If order of A is m× n and order of B is n × p, then order of AB is m× p. 

Matrix multiplication is not commutative i.e. AB ≠ BA. 

Determinant: The association of a real number with square matrices of any dimension 

(order) is called the determinant of the matrix. Determinants can be distinguished from a 

matrix because they are always enclosed within a single set of vertical lines ′ ∥ ′. 



Properties of Determinants:  

 Let A be a square matrix of order n. The sum of product of elements of any 

row ( or column) with their cofactors is always equal to  |A| i.e. ∑ aijCij =
n
j=1

|A| 

 Let A be a square matrix of order n. The sum of product of elements of any 

row ( or column) with the cofactors of the corresponding elements of some 

other row ( or column)  is always equal to  0 i.e. ∑ aijCkj = 0
n
j=1  

 |A| = |AT| 

 By interchanging any two rows (or columns), the value of determinant 

changes by minus sign. 

 If any two rows (or columns) are identical, then |A| = 0. 

 If each element of a row (or column) is multiplied by a constant k, then value 

of new determinant is k times the value of original determinant. 

 If each element of a row (or column) is multiplied by a constant k and then 

added to the corresponding elements of some other row (or column), ten 

value of the determinant remains unchanged. 

 If each element of a row (or column) is expressed as a sum of two or more 

terms, then the determinant can be expressed as sum of two or more 

determinants. 

 If each element in a row (or column) is zero, then |A| = 0. 

 If A and B are two square matrices, then |AB| = |A||B|. 

 

Q. Evaluate |
1 a a2

1 b b2

1 c c2
| without expanding. 

Sol.   |
1 a a2

1 b b2

1 c c2
|    (Operating R2 → R2 − R1, R3 → R3 − R1) 

yields
→   |

1 a a2

0 b − a b2 − a2

0 c − a c2 − a2
|    (Taking out(b − a) and (c − a) common from R2 and R3) 

yields
→   (b − a)(c − a) |

1 a a2

0 1 b + a
0 1 c + a

| (Operating R3 → R3 − R2) 

 



yields
→   (b − a)(c − a) |

1 a a2

0 1 b + a
0 0 c − b

|(Taking out (c − b) common from  R3) 

yields
→   (b − a)(c − a)(c − b) |

1 a a2

0 1 b + a
0 0 1

|(Expanding along C1) 

 

= (a − b)(b − c)(c − a) 

Q. Evaluate |
1 a a2 − bc
1 b b2 − ac
1 c c2 − ab

| without expanding. 

Sol.   |
1 a a2 − bc
1 b b2 − ac
1 c c2 − ab

| = |
1 a a2

1 b b2

1 c c2
| + |

1 a −bc
1 b −ac
1 c −ab

| 

(Taking out (−1) common from  C3 of second determinant) 

= |
1 a a2

1 b b2

1 c c2
| − |

1 a bc
1 b ac
1 c ab

| 

(multiplyingR1, R2, R3of second determinant by  a, b, c respectively) 

= |
1 a a2

1 b b2

1 c c2
| −

1

abc
|
a a2 abc
b b2 abc
c c2 abc

|(Taking out 

(abc) common from  C3 of second determinant) 

 

= |
1 a a2

1 b b2

1 c c2
| −

abc

abc
|
a a2 1
b b2 1
c c2 1

| = |
1 a a2

1 b b2

1 c c2
| − |

a a2 1
b b2 1
c c2 1

|  

  (Interchanging C2 and C3 in second determinant ) 

= |
1 a a2

1 b b2

1 c c2
| − |

a 1 a2

b 1 b2

c 1 c2
|  

(Interchanging C1 and C2 in second determinant ) 

= |
1 a a2

1 b b2

1 c c2
| − |

1 a a2

1 b b2

1 c c2
| = 0  

 



yields
→   (b − a)(c − a) |

1 a a2

0 1 b + a
0 0 c − b

|(Taking out (c − b) common from  R3) 

yields
→   (b − a)(c − a)(c − b) |

1 a a2

0 1 b + a
0 0 1

|(Expanding along C1) 

 

= (a − b)(b − c)(c − a) 

 

Inverse of Matrix 

Let A be a square matrix. Then  A−1 =
1

|A|
adj. A. 

Note:  AA−1 = I = A−1A 

Q1.Calculate A−1 if A = [
1 3 3
1 4 3
1 3 4

] 

Here A = [
1 3 3
1 4 3
1 3 4

] 

|A| = 1(16 − 9) − 3(4 − 3) + 3(3 − 4) = 1 ≠ 0. Thus A−1 exists. 

      Cofactors of elements aij in A are  

c11 = (−1)
1+1 |

4 3
3 4

| = 7 

c12 = (−1)
1+2 |

1 3
1 4

| = −1 

c13 = (−1)
1+3 |

1 4
1 3

| = −1 

c21 = (−1)
2+1 |

3 3
3 4

| = −3 

c22 = (−1)
2+2 |

1 3
1 4

| = 1 

c23 = (−1)
2+3 |

1 3
1 3

| = 0 

c31 = (−1)
3+1 |

3 3
4 3

| = −3 



c32 = (−1)
3+2 |

1 3
1 3

| = 0 

c33 = (−1)
3+3 |

1 3
1 4

| = 1 

∴ adj. A = [
7 −1 −1
−3 1 0
−3 0 1

]

T

= [
7 −3 −3
−1 1 0
−1 0 1

] 

A−1 =
1

|A|
adj. A =

1

1
[
7 −3 −3
−1 1 0
−1 0 1

] = [
7 −3 −3
−1 1 0
−1 0 1

] 

 

Cramer’s Rule 

Let the system of equations be 

a11x + a12y + a13z = b1, a21x + a22y + a23z = b2, a31x + a32y + a33z = b3 

Then      ∆= |

a11 a12 a13
a21 a22 a23
a31 a32 a33

|, ∆1= |

b1 a12 a13
b2 a22 a23
b3 a32 a33

| ,   ∆2= |

a11 b1 a13
a21 b2 a23
a31 b3 a33

|  , 

∆3= |

a11 a12 b1
a21 a22 b2
a31 a32 b3

| 

 If  ∆≠ 0 , then x =
∆1

∆
,   y =

∆2

∆
,   z =

∆3

∆
 

 If ∆= 0 and at least oneof ∆1, ∆2, ∆3then system is inconsistent i.e. has no solution. 

 If  ∆= ∆1= ∆2= ∆3= 0, then system has infinitely many solutions. Take any two 

equations out of the three given equations and shift one of the variables, say z, on 

the right hand side. Solve these two equations by Cramer’s rule to obtain x, y in 

terms of z. 

Q1. Solve by Cramer’s rule5x − 7y + z = 11, 6x − 8y − z = 15, 3x + 2y − 6z = 7 

Sol.  By Cramer’s rule∆= |
5 −7 1
6 −8 −1
3 2 −6

| = 5(48 + 2) + 7(−36 + 3) + 1(12 + 18) = 55 

∆1= |
11 −7 1
15 −8 −1
7 2 −6

| = 11(48 + 2) + 7(−90 + 7) + 1(30 + 56) = 55 

∆2= |
5 11 1
6 15 −1
3 7 −6

| = 5(−90 + 7) − 11(−36 + 3) + 1(42 − 45) = −55 



∆3= |
5 −7 11
6 −8 15
3 2 7

| = 5(−56 − 30) + 7(42 − 45) + 11(12 + 24) = −55 

x =
∆1
∆
=
55

55
= 1,   y =

∆2
∆
=
−55

55
= −1,   z =

∆3
∆
=
−55

55
= −1 

 

Q2. Solve by Cramer’s rule  2x − y + z = 4, x + 3y + 2z = 12, 3x + 2y + 3z = 10 

Sol.  By Cramer’s rule  ∆= |
2 −1 1
1 3 2
3 2 3

| = 2(9 − 4) + 1(3 − 6) + 1(2 − 9) = 0 

∆1= |
4 −1 1
12 3 2
10 2 3

| = 4(9 − 4) + 1(36 − 20) + 1(24 − 30) = 30 ≠ 0 

       Therefore system is inconsistent and has no solution. 

Matrix Inversion Method 

Let the system of equations be 

a11x + a12y + a13z = b1, a21x + a22y + a23z = b2, a31x + a32y + a33z = b3 

Then  A = [

a11 a12 a13
a21 a22 a23
a31 a32 a33

] , X = [
x
y
z
] , B = [

b1
b2
b3

] 

 If  |A| ≠ 0, then system has unique solution. 

The system can be written as  AX = B
yields
→    X = A−1B 

 If |A| = 0 and (adj. A)B = 0 , then system is consistent and has infinitely many 

solutions. 

 If |A| = 0 and (adj. A)B ≠ 0 , then system is inconsistent. 

Q3. Solve by matrix inversion method  x + 2y + z = 7, x + 3z = 11, 2x − 3y = 1 

Sol. Here A = [
1 2 1
1 0 3
2 −3 0

] ,    B = [
7
11
1
] , X = [

x
y
z
] 

|A| = 1(0 + 9) − 2(0 − 6) + 1(−3 − 0) = 18 ≠ 0. Thus system has unique solution. 

      Cofactors of elements aij in A are  

c11 = (−1)
1+1 |

0 3
−3 0

| = 9  



c12 = (−1)
1+2 |

1 3
2 0

| = 6  

c13 = (−1)
1+3 |

1 0
2 −3

| = −3  

c21 = (−1)
2+1 |

2 1
−3 0

| = −3  

c22 = (−1)
2+2 |

1 1
2 0

| = −2  

c23 = (−1)
2+3 |

1 2
2 −3

| = 7  

c31 = (−1)
3+1 |

2 1
0 3

| = 6  

c32 = (−1)
3+2 |

1 1
1 3

| = −2  

c33 = (−1)
3+3 |

1 2
1 0

| = −2  

∴ adj. A = [
9 6 −3
−3 −2 7
6 −2 −2

]

T

= [
9 −3 6
6 −2 −2
−3 7 −2

]  

A−1 =
1

|A|
adj. A =

1

18
[
9 −3 6
6 −2 −2
−3 7 −2

]  

X = A−1B =
1

18
[
9 −3 6
6 −2 −2
−3 7 −2

] [
7
11
1
] =

1

18
[
36
18
54
] = [

2
1
3
]  

∴ x = 2, y = 1, z = 3  

 

Rank: A matrix A is said to be of rank r if 

 (i) All the minors, in A, of order greater than r are zero. 

(ii) There exists atleast one minor of order r in A which is non zero. 

Q. Find rank of  A = [
1 1 0
2 −3 0
3 −3 1

] 

Sol. A = [
1 1 0
2 −3 0
3 −3 1

] 



|
1 1 0
2 −3 0
3 −3 1

| = 1(−3) − 1(2) + 0 = −5 ≠ 0 ∴ ρ(A) = 3  

Q. What is the rank of a non-singular matrix of order n? 

Sol. The rank of a non-singular matrix of order n is n because the determinant of non-

singular matrix  A is non-zero. 

Q. If A is a non- zero row and B is a non- zero column matrix, show that rank AB =1. 

Sol. Let A = [y1 y2 …… . yn]  and B =

[
 
 
 
 
 
x1
x2
:
:
:
:
xn]
 
 
 
 
 

 

 Then AB = [x1y1 + x2y2 + …… .+ xnyn]      which is a singleton matrix. Hence rank AB = 1. 

 

 

Linearly Dependent vectors:  A set of vectors X1, X2, …… . . , Xnis said to be linearly 

dependent  if there exist scalars α1, α2, …… . , αn, atleast one αi non- zero, such that   

α1X1 + α2X2 +⋯+ αnXn = 0 

       e.g.  X1 = (2,4)and  X2 = (1,2), then  X1 + (−2)X2 = 0. Therefore X1and X1 are 

linearly dependent vectors. 

Linearly Independent vectors:  A set of vectors X1, X2, …… . . , Xnis said to be linearly     

independent If for scalars α1, α2, …… . , αn,  

α1X1 + α2X2 +⋯+ αnXn = 0 

Implies all αi are zero.      

e.g.  X1 = (2,0)and  X2 = (0,4),  

then   α1X1 + α2X2 = 0
yields
→    (2α1, 4α2) = 0

yields
→   α1 = 0 and α2 = 0. Therefore  X1and X2 

are linearly independent vectors. 

Q. Determine whether the set  {(3,2,4), (1,0,2), (1, −1, −1)} of vectors linearly 

independent. 



Sol.  |
3 2 4
1 0 2
1 −1 −1

| = 3(0 + 2) − 2(−1 − 2) + 4(−1) = 4 ≠ 0 

∴ Vectors linearly independent. 

Q. Determine whether the set  {(2,2,1), (1, −1,1), (1,0,1)} of vectors linearly 

independent. 

Sol.  |
2 2 1
1 −1 1
1 0 1

| = 2(−1 − 0) − 2(1 − 1) + 1(0 + 1) = −1 ≠ 0 

∴ Vectors linearly independent. 

 

Conditions for consistency of system of equations 

Non-homogenous system of linear equations (AX=B) 

i. If ρ(A: B) = ρ(A) = number of unknowns, the system has unique solution. 

ii. If ρ(A: B) = ρ(A) < number of unknowns, the system has an infinite number of 

solutions. 

iii. If ρ(A: B) ≠ ρ(A), the system is inconsistent i.e. it has no solution. 

 

Homogenous system of linear equations (AX=0) 

i. This system always has a solution X=0 called the null or trivial solution. 

ii. If ρ(A) = number of unknowns, the system has unique solution i.e. trivial 

solution. 

iii. If ρ(A) < number of unknowns, the system has an infinite number of 

solutions. 

Gauss Elimination Method to solve system of equations: 

i. Convert the system to matrix form. 

ii. Convert the matrix to Echelon form (by applying row operations only). 

iii. Apply back substitution i.e. convert the matrix to system of equations. 

Gauss Jordan Method to solve system of equations: 

i. Convert the system to matrix form. 

ii. Convert the matrix to Normal form (by applying row operations only). 

iii. Apply back substitution i.e. convert the matrix to system of equations. 

 

 



Q. Solve the system of equations x + y + z = 3,   3x − 9y + 2z = −4, 5x − 3y + 4z = 

Sol.  [A: B] = [
1 1 1
3 −9 2
5 −3 4

:
:
:

3
−4
6
]       (Operating R2 → R2 − 3R1,   R3 → R3 − 5R1) 

yields
→   [

1 1 1
0 −12 −1
0 −8 −1

:
:
:

3
−13
−9

]       (Operating R2 →
R2

−12
) 

yields
→   [

1 1 1

0 1
1

12

0 −8 −1

:
:
:

3
13

12

−9

]          (Operating , R3 + 8R2)
yields
→   [

1 1 1

0 1
1

12

0 0
−4

12

:
:
:

3
13

12
−4

12

] 

Since ρ[A: B] = ρ(A) = number of unknowns, so system is consistent and has unique 

solution. 

            Applying back substitution, from R3,     
−4

12
z =

−4

12

yields
→    z = 1 

From  R2, y +
1

12
z =

13

12

yields
→    y =

13

12
−

1

12
z
yields
→    y =

12

12
= 1 

From  R1,  x + y + z = 3
yields
→    x + 1 + 1 = 3

yields
→   x = 1 

           Hence solution is   x = 1,   y = 1,   z = 1 

 

 

Q. Solve the system of equations    

x + 2y   + z = 2,   3x + y − 2z = 1,   4x − 3y − z = 3,   2x + 4y + 2z = 4 

Sol.       [A: B] = [

1 2 1
3 1 −2
4
2
−3
4

−1
2

: 2
: 1
:
:
3
4

]    (Operating R2 − 3R1, R3 − 4R1, R4 − 2R1) 

yields
→   [

1 2 1
0 −5 −5
0
0
−11
0

−5
0

: 2
: −5
:
:
−5
0

]    (Operating R2 →
R2

−5
) 

yields
→   [

1 2 1
0 1 1
0
0
−11
0

−5
0

: 2
: 1
:
:
−5
0

]     (Operating , R3 + 11R2)
yields
→   [

1 2 1
0 1 1
0
0
0
0
6
0

: 2
: 1
:
:
6
0

] 

Since ρ[A: B] = ρ(A) = number of unknowns, so system is consistent and has unique 

solution. 



            Applying back substitution, from R3,     6z = 6
yields
→    z = 1 

From  R2, y + z = 1
yields
→    y = 1 − z

yields
→    y = 1 − 1 = 0 

From  R1,  x + 2y + z = 2
yields
→    x + 0 + 1 = 2

yields
→   x = 1 

           Hence solution is   x = 1, y = 0, z = 1 

Q.  Find the values of   α      for unique solution and infinitely many solutions. Hence 

solve the system in each case.  3x − y + 4z = 3,    x + 2y − 3z = −2,     6x + 5y +

αz = −3 

Sol. [A: B] = [
3 −1 4
1 2 −3
6 5 α

: 3
: −2
: −3

] (Operating R2 ↔ R1) 

yields
→   [

1 2 −3
3 −1 4
6 5 α

: −2
: 3
: −3

]   (Operating R2 − 3R1, R3 − 6R1) 

yields
→   [

1 2 −3
0 −7 13
0 −7 α + 18

: −2
: 9
: 9

]   (Operating , R3 − R2) 

yields
→   [

1 2 −3
0 −7 13
0 0 α + 5

: −2
: 9
: 0

]  

(i) system is consistent and has unique solution if  ρ[A: B] = ρ(A) = number of unknowns 

  i.e.  α + 5 ≠ 0
yields
→    α ≠ −5 

When  α + 5 ≠ 0, [A: B] = [
1 2 −3
0 −7 13
0 0 α + 5

: −2
: 9
: 0

] 

Applying back substitution, from R3,     (α + 5)z = 0
yields
→    z = 0 

From  R2,   −7y + 13z = 9
yields
→   −7y = 9

yields
→    y =

−9

7
 

From  R1,  x + 2y − 3z = −2
yields
→    x −

18

7
= −2

yields
→   x =

4

7
 

Hence solution is   x =
4

7
, y =

−9

7
, z = 0 

 

 (ii) system is consistent and has infinitely many solutions if       



ρ[A: B] = ρ(A) < number of unknowns          i.e.  α + 5 = 0
yields
→    α = −5 

When α + 5 = 0, [A: B] = [
1 2 −3
0 −7 13
0 0 0

: −2
: 9
: 0

] 

Let  z = t   Applying back substitution,  

From  R2,   −7y + 13z = 9
yields
→   −7 y = 9 − 13t

yields
→    y =

13t−9

7
 

From  R1,  x + 2y − 3z = −2
yields
→    x +

26t−18

7
− 3t = −2

yields
→   x +

5t−18

7
= −2 

yields
→   x =

4−5t

7
  

 Hence solution is   x =
4−5t

7
, y =

13t−9

7
, z = t 

 

   Orthogonal matrix: A square  matrix A is said to be orthogonal if  

AAT = ATA = I. 

                                              e.g. A = 
1

3
[
1 2 2
2 1 −2
2 −2 1

] 

Unitary matrix:  A square matrix A is said to be Unitary if  

AθA = AAθ = I 

       where  Aθ = (A)
T
 

 

               e.g. A =  
1

3
[
1 2 2
2 1 −2
2 −2 1

] 

      Note: Every orthogonal matrix is unitary. 

Hermitian matrix:  A square matrix A is said to be Hermitian matrix if  

Aθ = A  i.e.  aij = aji 

       Diagonal elements of a Hermitian matrix are real numbers. 

                                         e.g.  A = [
1 2 + 3i 5 − 6i

2 − 3i 2 9 − 6i
5 + 6i 9 + 6i −11

] 



 

Skew Hermitian matrix:  A square matrix A is said to be skew Hermitian matrix if  

Aθ = −A  i.e.  aij = −aji 

       Diagonal elements of a skew Hermitian matrix are either zero or purely imaginary 

numbers. 

   e.g.  A =  [
1 2 + 3i −5 − 6i

−2 + 3i 2 −9 + 6i
5 − 6i 9 + 6i −11

] 

Similar matrices: A square matrix A is said to be similar to a square matrix B if there exists 

an invertible matrix P   such that    A = P−1BP.  P is called similarity matrix.  This relation of 

similarity is a symmetric relation. 

Cayley Hamilton theorem: Every square matrix satisfies its own characteristic equation. 

Eigen values and Eigen Vectors: Let A be a square matrix. Then the equation determinant 

(A − αI) =0 is called characteristic equation of A.  The roots of characteristic equation of A 

are called Eigen values or latent roots of matrix A. 

A column vector X satisfying the equation  AX = αX  i.e. (A − αI)X = 0 is called Eigen vector 

or latent vector of matrix A corresponding to eigen value α. 

Diagonalizable matrix: A square matrix A is said to be diagonalizable if there exists an 

invertible matrix P such that  

P−1BP = D 

 Where D is a diagonal matrix and the diagonal elements of D are Eigen values of A. 

1. The characteristics equation of a matrix A is t2−t−1=0, then determine A-1. 

Sol. By Cayley Hamilton theorem, every square matrix satisfies its characteristic equation. 

       Therefore A2-A-1=0 

                   or  A2-A=1 

       Premultipying both sides by A 

                       A-I=A-1 

2. Prove  eigen value of a Hermitian matrix is real. 

 

    Sol. Let A be a Hermitian matrix.  Therefore Aθ = A −− − − −−(1) 

              Let α be eigen value of A and X be the corresponding non-zero eigen vector. Then 



  AX = αX
yields
→   (AX)θ = (αX)θ

yields
→   XθAθ = α̅Xθ

yields
→   XθA = α̅Xθ   (using (1)) 

  Post multiplying both sides by X, we get 

  Xθ(AX) = α̅(XθX)
yields
→   Xθ αX = α̅(XθX)

yields
→   α(XθX) = α̅(XθX)

yields
→   α = α̅ 

            Hence α is a real number. Therefore Eigen value of a Hermitian matrix is real. 

1. Prove 
|A|

α
 is an eigen value of adj (A)eigen vector remaining the same if α is an eigen value of A and X 

is corresponding Eigen vector. 

Sol. Let A be a square matrix− −− − − − (1) 

              Let α be eigen value of A and X be the corresponding non-zero eigen vector. Then 

  AX = αX   (using (1)) 

  Pre- multiplying both sides by adj (A), we get 

  adj (A)(AX) = adj (A)αX
yields
→   (adj (A)A)X = α(adj (A)X)

yields
→   |A|X = α(adj (A)X) 

adj (A)X =
|A|

α
X 

              Hence 
|A|

α
 is an eigen value of adj (A)  and X is corresponding Eigen vector.  

 

2. Prove that product of two orthogonal matrices is orthogonal matrix 

Sol. Let A and B be two orthogonal matrices. Therefore  

 AAT = ATA = I and BBT = BTB = I 

 Now   (AB)(AB)T = ABBTAT = AIAT = AAT = I     and 

(AB)T(AB) = BTAT AB = BIBT = BBT = I 

       Hence AB is an orthogonal matrix. Therefore product of two orthogonal matrices is orthogonal  

       matrix. 

3. Prove that transpose of an orthogonal matrix is orthogonal matrix. 

Sol. Let A be orthogonal matrix. Therefore  

 AAT = ATA = I 

      Now   AT(AT)T = ATA = I               and 

(AT)TAT=AAT = I 

 Hence AT is an orthogonal matrix 

Therefore transpose of an orthogonal matrix is orthogonal matrix. 



4. Prove that inverse of an orthogonal matrix is an orthogonal matrix. 

Sol.  Let A be orthogonal matrix. Therefore  

 AAT = ATA = I 

      Now   A−1(A−1)T = A−1(AT)−1 = (ATA)−1 = I−1 = I               and 

(A−1)TA−1=(AT)−1A−1 = (AAT)−1 = I−1 = I 

 Hence A−1 is an orthogonal matrix 

Therefore inverse of an orthogonal matrix is orthogonal matrix. 

5. Prove that determinant of an orthogonal matrix is ±1. 

Sol. Let A be orthogonal matrix. Therefore  

 AAT = ATA = I 

 Taking determinant on both sides 

 |AAT| = |I|
yields
→   |A||AT| = 1

yields
→   |A||A| = 1

yields
→   |A|2 = 1

yields
→   |A| = ±1 

 (Because  |CD| = |C||D|,    |I| = 1,    |A| = |AT| ) 

6. Prove that inverse of a unitary matrix is an unitary matrix. 

Sol.  Let A be unitary matrix. Therefore  

 AθA = AAθ = I  where   Aθ = (A)
T
 

      Now   A−1(A−1)θ = A−1(Aθ)
−1
= (AθA)

−1
= I−1 = I               and 

(A−1)θA−1=(Aθ)
−1
A−1 = (AAθ)

−1
= I−1 = I 

 Hence A−1 is an orthogonal matrix 

Therefore inverse of an orthogonal matrix is orthogonal matrix. 

7. State and prove Cayley Hamilton theorem. 

Sol. Statement: Every square matrix satisfies its own characteristic equation. 

       Proof:  Let A be a square matrix of order n and its characteristic equation be |A − λI| = 0 

      i.e.  (−1)nλn + a1λ
n−1 + a2λ

n−2 +⋯……+ an = 0 

      Required to be proved:   (−1)nAn + a1A
n−1 + a2A

n−2 +⋯……+ anI = 0 

      Here  λ is an eigen value of A.  

      [A − λI] is a matrix of order n 
yields
→    adj. (A − λI) is a matrix of order (n-1).  

     Therefore we can write   adj. (A − λI) = P1λ
n−1 + P2λ

n−2 +⋯……+ Pn  where                

     P1, P2, ……… Pn  are square matrices.  

    Also  A(adj. A) = |A|I  
yields
→     (A − λI)adj. (A − λI) = |A − λI|I 

 
yields
→    (A − λI)[P1λ

n−1 + P2λ
n−2 +⋯……+ Pn]= [(−1)

nλn + a1λ
n−1 + a2λ

n−2 +⋯……+ an]I 

               Comparing coefficients of like powers of A, we get 



                        −P1 = (−1)
nI 

                AP1 − P2 = a1I 

               AP2 − P3 = a2I 

              AP3 − P4 = a3I 

     …………………….  (and so on) 

         APn−1 − Pn = an−1I 

             APn = anI 

   Pre-multiplying these equations by   An, An−1, An−2, ……… , A, I  respectively on both sides and  

  adding, we get     0 = (−1)nAn + a1A
n−1 + a2A

n−2 +⋯……+ anI 

   
yields
→   (−1)nAn + a1A

n−1 + a2A
n−2 +⋯……+ anI = 0 

  (Hence proved). 

     

8. Find characteristic equation of  A = [
1 0 −1
1 2 1
2 2 3

] 

Sol. A = [
1 0 −1
1 2 1
2 2 3

] 

              Characteristic equation of A is |A − αI| = 0
yields
→   |

1 − α 0 −1
1 2 − α 1
2 2 3 − α

| = 0 

 
yields
→   α3 − 6α2 + 11α − 6 = 0 

9. Is A = [
1 0 0
0 3 −1
0 −1 3

] diagonalizable? 

Sol. A = [
1 0 0
0 3 −1
0 −1 3

] 

              Characteristic equation of A is |A − αI| = 0
yields
→   |

1 − α 0 0
0 3 − α −1
0 −1 3 − α

| = 0 

 
yields
→   α3 − 7α2 + 14α − 8 = 0

yields
→   α = 1,2,4  

            Since A has three distinct Eigen values, ∴ it has three linearly independent Eigen vectors. Hence A   

            A is diagonalizable. 

10. Verify Cayley Hamilton theorem for A = [
1 4
3 2

]. Hence find A−1. Also find Eigen values and vectors 

of  A 



Sol. A = [
1 4
3 2

] 

Characteristic equation of A is |A − αI| = 0
yields
→   |

1 − α 4
3 2 − α

| = 0 

 
yields
→   α2 − 3α − 10 = 0

yields
→   α = −2,5 

  By Cayley Hamilton theorem  A2 − 3A − 10I = 0  ………………………(*) 

  Now A2 = [
1 4
3 2

] [
1 4
3 2

] = [
13 12
9 16

]   ,    

∴ A2 − 3A − 10I = [
13 12
9 16

] + [
−3 −12
−9 −6

] + [
−10 0
0 −10

] = [
0 0
0 0

] 

∴ Cayley Hamilton theorem is verified for given matrix A. 

  Multiplying both sides of (*) by A−1, we get  A − 3I = 10A−1
yields
→   A−1 =

1

10
[
−2 4
3 −1

] 

Let X1 = [
x
y]be the Eigen vector of A corresponding to Eigen value α = −2. 

∴  [A − αI]X1 = 0
yields
→   [A − (−2)I]X1 = 0

yields
→   [

3 4
3 4

] [
x
y] = [

0
0
] 

 
yields
→   3x + 4y = 0 , 3x + 4y = 0

yields
→   

x

−4
=
y

3
 

 ∴  X1 = [
−4
3
]  is the Eigen vector of A corresponding to Eigen value α = −2. 

Let X2 = [
x
y]be the Eigen vector of A corresponding to Eigen value α = 5. 

∴  [A − αI]X2 = 0
yields
→   [A − (5)I]X2 = 0

yields
→   [

−4 4
3 −3

] [
x
y] = [

0
0
] 

 
yields
→   −4x + 4y = 0 , 3x − 3y = 0

yields
→   x = y 

yields
→   

x

1
=
y

1
 

 ∴  X2 = [
1
1
]  is the Eigen vector of A corresponding to Eigen value α = 5. 

11. Verify Cayley Hamilton theorem for A = [
2 −1 1
−1 2 −1
1 −1 2

]. Hence find A−1. 

Sol.  A = [
2 −1 1
−1 2 −1
1 −1 2

] 

              Characteristic equation of A is |A − αI| = 0
yields
→   |

2 − α −1 1
−1 2 − α −1
1 −1 2 − α

| = 0 

 
yields
→   α3 − 6α2 + 9α − 4 = 0 

             By Cayley Hamilton theorem A3 − 6A2 + 9A − 4I = 0     …………………..(i) 

            L.H.S.A2 = A.A = [
2 −1 1
−1 2 −1
1 −1 2

] [
2 −1 1
−1 2 −1
1 −1 2

] = [
6 −5 5
−5 6 −5
5 −5 6

] 



𝐴3 = 𝐴𝐴𝐴 = [
6 −5 5
−5 6 −5
5 −5 6

] [
2 −1 1
−1 2 −1
1 −1 2

] = [
22 −21 21
−21 22 −21
21 −21 22

] 

        Hence 𝐴3 − 6𝐴2 + 9𝐴 − 4𝐼 

= [
22 −21 21
−21 22 −21
21 −21 22

] − 6 [
6 −5 5
−5 6 −5
5 −5 6

] + 9 [
2 −1 1
−1 2 −1
1 −1 2

] − 4 [
1 0 0
0 1 0
0 0 1

] 

= [
22 − 36 + 18 − 4 −21 + 30 − 9 21 − 30 + 9
−21 + 30 − 9 22 − 36 + 18 − 4 −21 + 30 − 9
21 − 30 + 9 −21 + 30 − 9 22 − 36 + 18 − 4

] = [
0 0 0
0 0 0
0 0 0

] 

     Hence Cayley Hamilton theorem is verified for the given matrix A 

 From(i), 4𝐼 = 𝐴3 − 6𝐴2 + 9𝐴 

             Multiplying both sides by 𝐴−1, we get 

𝐴−1 =
1

4
[𝐴2 − 6𝐴 + 9𝐼] =

1

4
[[
6 −5 5
−5 6 −5
5 −5 6

] − 6 [
2 −1 1
−1 2 −1
1 −1 2

] + [
9 0 0
0 9 0
0 0 9

]] 

=
1

4
[
3 1 −1
1 3 1
−1 1 3

] 

12. Find Eigen values and vectors of 𝐴 = [
3 1 −1
−2 1 2
0 1 2

] 

Sol. 𝐴 = [
3 1 −1
−2 1 2
0 1 2

] 

              Characteristic equation of A is |𝐴 − 𝛼𝐼| = 0
𝑦𝑖𝑒𝑙𝑑𝑠
→   |

3 − 𝛼 1 −1
−2 1 − 𝛼 2
0 1 2 − 𝛼

| = 0 

 
𝑦𝑖𝑒𝑙𝑑𝑠
→   𝛼3 − 6𝛼2 + 11𝛼 − 6 = 0

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝛼 = 1,2,3 are Eigen values of given matrix. 

 Let 𝑋1 = [
𝑥
𝑦
𝑧
]be the Eigen vector of A corresponding to Eigen value 𝛼 = 1. 

∴  [𝐴 − 𝛼𝐼]𝑋1 = 0
𝑦𝑖𝑒𝑙𝑑𝑠
→   [𝐴 − (1)𝐼]𝑋1 = 0

𝑦𝑖𝑒𝑙𝑑𝑠
→   [

2 1 −1
−2 0 2
0 1 1

] [
𝑥
𝑦
𝑧
] = [

0
0
0
] 

 
𝑦𝑖𝑒𝑙𝑑𝑠
→    2𝑥 + 𝑦 − 𝑧 = 0 , −2𝑥 + 2𝑧 = 0, 𝑦 + 𝑧 = 0 

              From first two equations,   
𝑥

1 −1
0 2

=
𝑦

−1 2
2 −2

=
𝑧

2 1
−2 0

𝑦𝑖𝑒𝑙𝑑𝑠
→   

𝑥

2
=

𝑦

−2
=
𝑧

2

𝑦𝑖𝑒𝑙𝑑𝑠
→   

𝑥

1
=

𝑦

−1
=
𝑧

1
 

 ∴  𝑋1 = [
1
−1
1
]  is the Eigen vector of A corresponding to Eigen value 𝛼 = 1. 



 Let 𝑋2 = [
𝑥
𝑦
𝑧
]be the Eigen vector of A corresponding to Eigen value 𝛼 = 2. 

∴  [𝐴 − 𝛼𝐼]𝑋2 = 0
𝑦𝑖𝑒𝑙𝑑𝑠
→   [𝐴 − (2)𝐼]𝑋2 = 0

𝑦𝑖𝑒𝑙𝑑𝑠
→   [

1 1 −1
−2 −1 2
0 1 0

] [
𝑥
𝑦
𝑧
] = [

0
0
0
] 

 
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑥 + 𝑦 − 𝑧 = 0 , −2𝑥 − 𝑦 + 2𝑧 = 0, 𝑦 = 0 

              From first two equations,   
𝑥

1 −1
−1 2

=
𝑦

−1 1
2 −2

=
𝑧

1 1
−2 −1

𝑦𝑖𝑒𝑙𝑑𝑠
→   

𝑥

1
=
𝑦

0
=
𝑧

1
 

 ∴  𝑋2 = [
1
0
1
]  is the Eigen vector of A corresponding to Eigen value 𝛼 = 2. 

 Let 𝑋3 = [
𝑥
𝑦
𝑧
]be the Eigen vector of A corresponding to Eigen value 𝛼 = 3. 

∴  [𝐴 − 𝛼𝐼]𝑋3 = 0
𝑦𝑖𝑒𝑙𝑑𝑠
→   [𝐴 − (3)𝐼]𝑋3 = 0

𝑦𝑖𝑒𝑙𝑑𝑠
→   [

0 1 −1
−2 −2 2
0 1 −1

] [
𝑥
𝑦
𝑧
] = [

0
0
0
] 

 
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑦 − 𝑧 = 0 , −2𝑥 − 2𝑦 + 2𝑧 = 0, 𝑦 − 𝑧 = 0

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑦 − 𝑧 = 0 , −2𝑥 − 2𝑦 + 2𝑧 = 0 

∴ we get  ,   
𝑥

1 −1
−2 2

=
𝑦

−1 0
2 −2

=
𝑧

0 1
−2 −2

𝑦𝑖𝑒𝑙𝑑𝑠
→   

𝑥

0
=
𝑦

2
=
𝑧

2

𝑦𝑖𝑒𝑙𝑑𝑠
→   

𝑥

0
=
𝑦

1
=
𝑧

1
 

 ∴  𝑋3 = [
0
1
1
]  is the Eigen vector of A corresponding to Eigen value 𝛼 = 2. 

13. Find Eigen values and vectors of 𝐴 = [
1 1 0
0 1 1
0 0 1

] 

Sol. 𝐴 = [
1 1 0
0 1 1
0 0 1

] 

              Characteristic equation of A is |𝐴 − 𝛼𝐼| = 0
𝑦𝑖𝑒𝑙𝑑𝑠
→   |

1 − 𝛼 1 0
0 1 − 𝛼 1
0 0 1 − 𝛼

| = 0 

 
𝑦𝑖𝑒𝑙𝑑𝑠
→   (1 − 𝛼)3

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝛼 = 1,1,1 are Eigen values of given matrix. 

 Let 𝑋1 = [
𝑥
𝑦
𝑧
]be the Eigen vector of A corresponding to Eigen value 𝛼 = 1. 

∴  [𝐴 − 𝛼𝐼]𝑋1 = 0
𝑦𝑖𝑒𝑙𝑑𝑠
→   [𝐴 − (1)𝐼]𝑋1 = 0

𝑦𝑖𝑒𝑙𝑑𝑠
→   [

0 1 0
0 0 1
0 0 0

] [
𝑥
𝑦
𝑧
] = [

0
0
0
] 

 
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑦 = 0 , 𝑧 = 0.  𝑇𝑎𝑘𝑒 𝑥 = 1 

 ∴  𝑋1 = [
1
0
0
]  is the Eigen vector of A corresponding to Eigen value 𝛼 = 1. 



14.  Examine whether the following matrix is diagonalizable. If so, obtain the matrix P such that 𝑃−1𝐴𝑃 is 

a diagonal matrix.𝐴 = [
−2 2 −3
2 1 −6
−1 −2 0

] 

Sol. 𝐴 = [
−2 2 −3
2 1 −6
−1 −2 0

] 

              Characteristic equation of A is |𝐴 − 𝛼𝐼| = 0
𝑦𝑖𝑒𝑙𝑑𝑠
→   |

−2 − 𝛼 2 −3
2 1 − 𝛼 −6
−1 −2 0 − 𝛼

| = 0 

 
𝑦𝑖𝑒𝑙𝑑𝑠
→   −(𝛼 + 3)(𝛼 + 3)(𝛼 − 5) = 0

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝛼 = −3,−3, 5 are Eigen values of given matrix. 

 Let 𝑋1 = [
𝑥
𝑦
𝑧
]be the Eigen vector of A corresponding to Eigen value 𝛼 = −3. 

∴  [𝐴 − 𝛼𝐼]𝑋1 = 0
𝑦𝑖𝑒𝑙𝑑𝑠
→   [𝐴 − (−3)𝐼]𝑋1 = 0

𝑦𝑖𝑒𝑙𝑑𝑠
→   [

1 2 −3
2 4 −6
−1 −2 3

] [
𝑥
𝑦
𝑧
] = [

0
0
0
] 

(Operating 𝑅2 → 𝑅2 − 2𝑅1, 𝑅3 → 𝑅3 + 𝑅1) 

 
𝑦𝑖𝑒𝑙𝑑𝑠
→   [

1 2 −3
0 0 0
0 0 0

] [
𝑥
𝑦
𝑧
] = [

0
0
0
]
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑥 + 2𝑦 − 3𝑧 = 0  

   Choose  𝑦 = 0
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑥 − 3𝑧 = 0

𝑦𝑖𝑒𝑙𝑑𝑠
→   

𝑥

3
=
𝑧

1
 

 ∴  𝑋1 = [
3
0
1
]  is the first Eigen vector of A corresponding to Eigen value 𝛼 = −3. 

      Choose  𝑧 = 0
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑥 + 2𝑦 = 0

𝑦𝑖𝑒𝑙𝑑s
→   

𝑥

−2
=
𝑦

1
 

 ∴  𝑋2 = [
−2
1
0
]  is another Eigen vector of A corresponding to Eigen value 𝛼 = −3. 

 Let 𝑋3 = [
𝑥
𝑦
𝑧
]be the Eigen vector of A corresponding to Eigen value 𝛼 = 5. 

∴  [𝐴 − 𝛼𝐼]𝑋3 = 0
𝑦𝑖𝑒𝑙𝑑𝑠
→   [𝐴 − (5)𝐼]𝑋3 = 0

𝑦𝑖𝑒𝑙𝑑𝑠
→   [

−7 2 −3
2 −4 −6
−1 −2 −5

] [
𝑥
𝑦
𝑧
] = [

0
0
0
] 

 
𝑦𝑖𝑒𝑙𝑑𝑠
→   −7𝑥 + 2 𝑦 − 3𝑧 = 0 , 2𝑥 − 4𝑦 − 6𝑧 = 0,−𝑥 − 2𝑦 − 5𝑧 = 0 

∴  from first two equations we get  ,   
𝑥

2 −3
−4 −6

=
𝑦

−3 −7
−6 2

=
𝑧

−7 2
2 −4

𝑦𝑖𝑒𝑙𝑑𝑠
→   

𝑥

−24
=

𝑦

−48
=

𝑧

24

𝑦𝑖𝑒𝑙𝑑𝑠
→   

𝑥

1
=

𝑦

12
=

𝑧

−1
 

 ∴  X3 = [
1
2
−1
]  is the Eigen vector of A corresponding to Eigen value 𝛼 = 5. 

∴ Modal Matrix P = [
−2 3 1
1 0 2
0 1 −1

] 



|𝑃| = |
−2 3 1
1 0 2
0 1 −1

| = 8 ≠ 0. Hence vectors are linearly independent and the given matrix is     

 Diagonalizable. 

𝑃−1 =
𝐴𝑑𝑗. 𝑃

|𝑃|
=
1

8
[
−2 4 6
1 2 5
1 2 −3

] 

 Diagonal Matrix = D = 𝑃−1𝐴𝑃 =
1

8
[
−2 4 6
1 2 5
1 2 −3

] [
−2 2 −3
2 1 −6
−1 −2 0

] [
−2 3 1
1 0 2
0 1 −1

] 

=
1

8
[
−24 0 0
0 −24 0
0 0 40

] [
−2 3 1
1 0 2
0 1 −1

] = [
−3 0 0
0 −3 0
0 0 5

] 

15. Let T be a linear transformation defined by    T [(
1 1
1 1

)] = (
1
2
3
)  ,    T [(

0 1
1 1

)] =

(
1
−2
3
)  ,     T [(

0 0
1 1

)] = (
1
−2
−3
)   ,     T [(

0 0
0 1

)] = (
−1
2
3
). Find  T [(

4 5
3 8

)]. 

Sol.The matrices (
1 1
1 1

) , (
0 1
1 1

),   (
0 0
1 1

),   (
0 0
0 1

)   are linearly independent and hence form a 

basis in the space of 2 × 2  matrices. We write for any scalars α1, α2, α3, α4,   not all zero 

(
4 5
3 8

) = α1 (
0 1
1 1

) + α2 (
0 1
1 1

) + α3 (
0 0
1 1

) + α4 (
0 0
0 1

) = [
α1 α1 + α2

α1 + α2 + α3 α1 + α2 + α3 + α4
] 

                         Comparing the elements and solving the resulting system of equations, we get  α1 = 4, α2 =

1, α3 = −2, α4 = 5 . Since T is a linear transformation,  

∴ T [(
4 5
3 8

)] = α1T [(
1 1
1 1

)] + α2 T [(
0 1
1 1

)] + α3  T [(
0 0
1 1

)] + α4   T [(
0 0
0 1

)]

= 4(
1
2
3
) + 1(

1
−2
3
) − 2(

1
−2
−3
) + 5(

−1
2
3
) = (

−2
20
36
) 

 


