

MODULE 5 GRAPHS

What is a graph?

- A data structure that consists of a set of nodes (vertices) and a set of edges that relate the nodes to each other
- The set of edges describes relationships among the vertices

What is a Graph?

• A graph G = (V,E) is composed of:

V: set of vertices

E: set of edges connecting the vertices in V

- An edge e = (u,v) is a pair of vertices
- Example:

$$V = \{a,b,c,d,e\}$$

Formal definition of graphs

• A graph *G* is defined as follows:

$$G=(V,E)$$

V(G): a finite, nonempty set of vertices

E(*G*): a set of edges (pairs of vertices)

Examples of Graphs

- $V = \{0,1,2,3,4\}$
- $E=\{(0,1), (1,2), (0,3), (3,0), (2,2), (4,3)\}$

When (x,y) is an edge, we say that x is *adjacent to* y, and y is *adjacent from* x.

1 is adjacent to 2.

2 is not adjacent to o.

3 is adjacent from o.

Directed vs. Undirected Graphs

- Undirected edge has no orientation (no arrow head)
- Directed edge has an orientation (has an arrow head)
- Undirected graph all edges are undirected
- Directed graph all edges are directed

Directed vs. undirected graphs

 When the edges in a graph have no direction, the graph is called undirected

Directed vs. undirected graphs (cont.)

 When the edges in a graph have a direction, the graph is called directed (or digraph)

Warning: if the graph is directed, the order of the vertices in each edge is important!!

Trees vs graphs

Trees are special cases of graphs!!

 Adjacent nodes: two nodes are adjacent if they are connected by an edge

5 is adjacent to 7 7 is adjacent from 5

- <u>Path</u>: a sequence of vertices that connect two nodes in a graph
- Complete graph: a graph in which every vertex is directly connected to every other vertex

Continued...

- A cycle is a simple path with the same start and end vertex.
- The degree of vertex i is the no. of edges incident on vertex i.

e.g., degree(2) = 2, degree(5) = 3, degree(3) = 1

Continued...

Undirected graphs are *connected* if there is a path between any two vertices

Directed graphs are *strongly connected* if there is a path from any one vertex to any other

Directed graphs are *weakly connected* if there is a path between any two vertices, *ignoring direction*

A *complete* graph has an edge between every pair of vertices

OWhat is the number of edges in a complete directed graph with N vertices?

$$O(N^2)$$

A

B

C

D

(a) Complete directed graph.

 What is the number of edges in a complete undirected graph with N vertices?

$$N*(N-1)/2$$
 $O(N^2)$

(b) Complete undirected graph.

• Weighted graph: a graph in which each edge carries a value

- In-degree of vertex *i* is the number of edges incident to *i* (i.e., the number of incoming edges).
 - e.g., indegree(2) = 1, indegree(8) = 0
- Out-degree of vertex *i* is the number of edges incident from *i* (i.e., the number of outgoing edges).
 - e.g., outdegree(2) = 1, outdegree(8) = 2

Examples

directed graph in-degree out-degree

in: 1, out: 2

in: 1, out: 0

 G_3

Continued...

- Loops: edges that connect a vertex to itself
- Paths: sequences of vertices po, p1, ... pm such that each adjacent pair of vertices are connected by an edge
- A simple path is a path in which all vertices, except possibly in the first and last, are different.
- Multiple Edges: two nodes may be connected by >1 edge
- Simple Graphs: have no loops and no multiple edges

CS16

FTI

Applications

• electronic circuits

• networks (roads, flights communications)

LAX

STL

HNL

DFW

Graph Representation

- For graphs to be computationally useful, they have to be conveniently represented in programs
- There are two computer representations of graphs:
 - Adjacency matrix representation
 - Adjacency lists representation

Graph implementation

- Array-based implementation
 - A 1D array is used to represent the vertices
 - A 2D array (adjacency matrix) is used to represent the edges

Graph implementation

- Linked-list implementation
 - A 1D array is used to represent the vertices
 - -A list is used for each vertex v which contains the vertices which are adjacent from v (adjacency list)

Adjacency Matrix

- A square grid of boolean values
- If the graph contains N vertices, then the grid contains N rows and N columns
- For two vertices numbered I and J, the element at row I and column J is true if there is an edge from I to J, otherwise false

Adjacency Matrix

0
1
2
3
4

0	1	2	3	4_
false	false	true	false	false
false	false	false	true	false
false	true	false	false	true
false	false	false	false	false
false	false	false	true	false

Adjacency Matrix

	1	2	3	4	5
1	0	1	1	1	0
2	1	0	0	1	0
3	1	0	0	1	1
4	1	1	1	0	1
5	0	0	1	1	0

Adjacency Matrix -Directed Multigraphs

A:

$$egin{pmatrix} 0 & 3 & 0 & 1 \ 0 & 1 & 2 & 0 \ 0 & 1 & 2 & 0 \ 0 & 0 & 0 & 0 \end{pmatrix}$$

Adjacency Lists Representation

- A graph of n nodes is represented by a onedimensional array L of linked lists, where
 - L[i] is the linked list containing all the nodes adjacent from node i.
 - The nodes in the list L[i] are in no particular order

Graphs: Adjacency List

- Adjacency list: for each vertex v ∈ V, store a list of vertices adjacent to v
- Example:
 - $Adj[1] = \{2,3\}$
 - $Adj[2] = {3}$
 - $Adj[3] = \{\}$
 - $Adj[4] = {3}$
- Variation: can also keep
 a list of edges coming *into* vertex

Graphs: Adjacency List

- How much storage is required?
 - The *degree* of a vertex v = # incident edges
 - Directed graphs have in-degree, out-degree
 - For directed graphs, # of items in adjacency lists is Σ out-degree(v) = |E| For undirected graphs, # items in adjacency lists is Σ degree(v) = 2 |E|
- So: Adjacency lists take O(V+E) storage

An undirected graph with n vertices and e edges ==> n head nodes and 2e list nodes

Implementing Graphs

ANY QUERY??