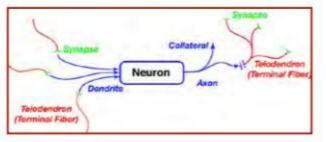
# Artificial Neural Network

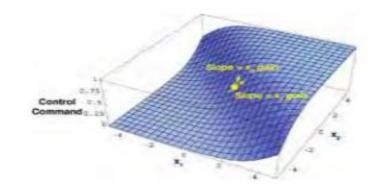
### Introduction to Neural Networks

- Natural and artificial neurons
- Natural and computational neural networks
  - Linear network
  - Perceptron
  - Sigmoid network
  - Radial basis function
- Applications of neural networks
- Supervised training
  - Left pseudoinverse
  - Steepest descent
  - Back-propagation





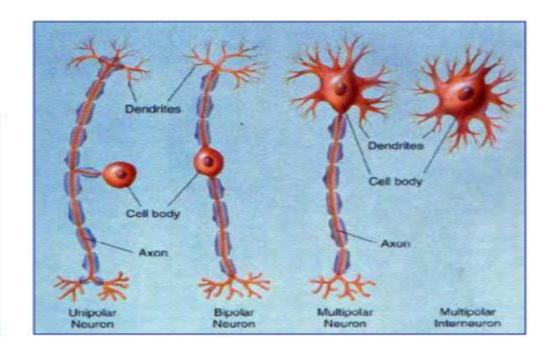
### Applications of Computational Neural Networks



- Classification of data sets
- Image processing
- Language interpretation
- Nonlinear function approximation
  - Efficient data storage and retrieval
  - System identification
- Nonlinear and adaptive control systems

#### **Neurons**

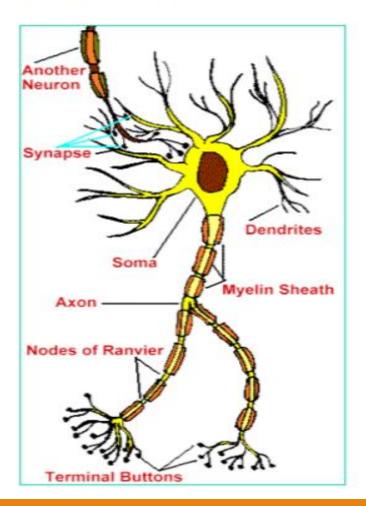
- Biological cells with significant electrochemical activity
- ~10-100 billion neurons in the brain
- Inputs from thousands of other neurons
- Output is scalar, but may have thousands of branches

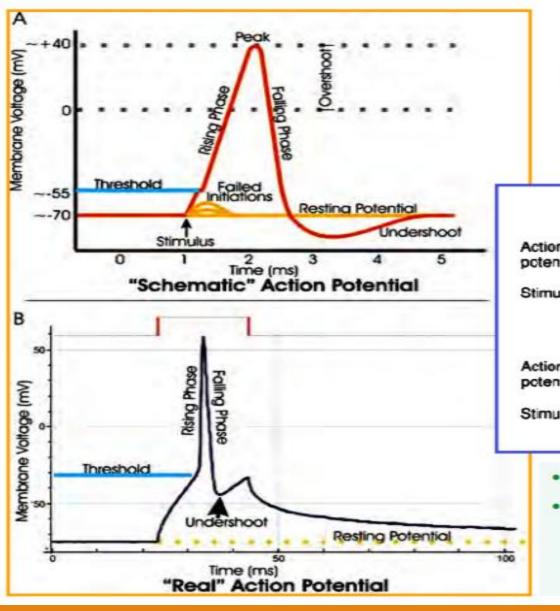


- Afferent (sensor) neurons send signals from organs and the periphery to the central nervous system
- Efferent (motor) neurons issue commands from the CNS to effector (e.g., muscle) cells
- Interneurons send signals between neurons in the central nervous system
- Signals are ionic, i.e., chemical (neurotransmitter atoms and molecules) and electrical (charge)

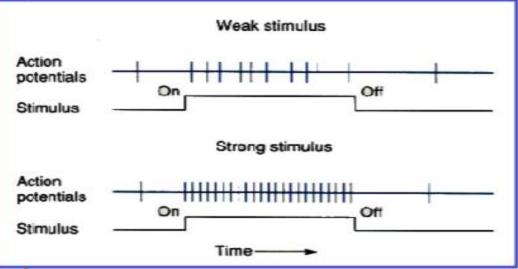
# Activation Input to Soma Causes Change in Output Potential

- Stimulus from
  - Receptors
  - Other neurons
  - Muscle cells
  - Pacemakers (c.g. cardiac sino-atrial node)
- When membrane potential of neuronal cell exceeds a threshold
  - Cell is polarized
  - Action potential pulse is transmitted from the cell
  - Activity measured by amplitude and firing frequency of pulses
  - Saltatory conduction along axon
    - Myelin Schwann cells insulate axon
    - Signal boosted at Nodes of Ranvier
- Cell depolarizes and potential returns to rest



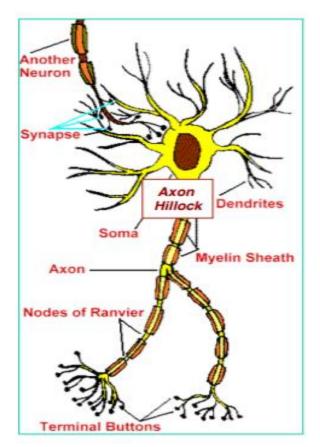


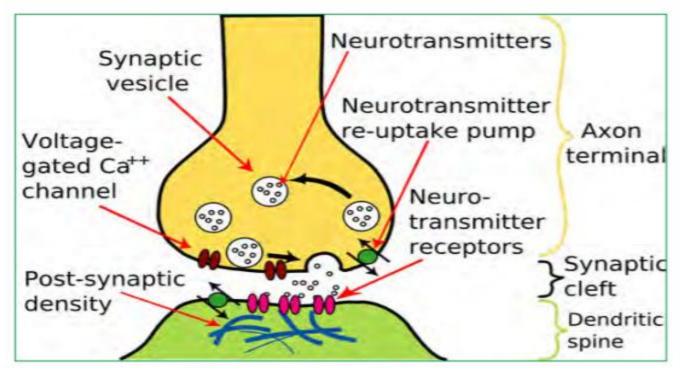
# Neural Action Potential



- Maximum Firing Rate: 500/sec
- Refractory Period: Minimum time increment between action potential firing ~ 1-2 msec

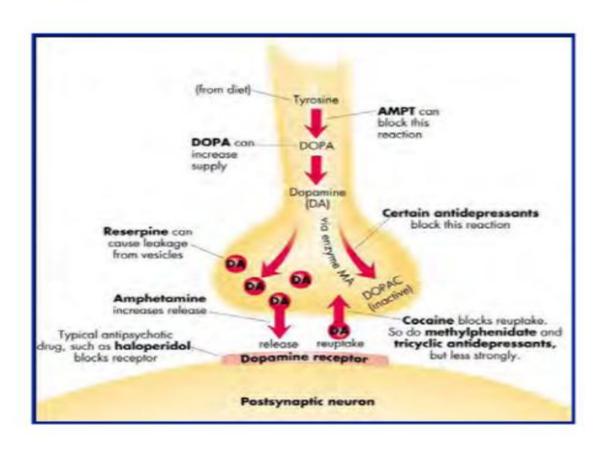
# Electrochemical Signaling at Axon Hillock and Synapse





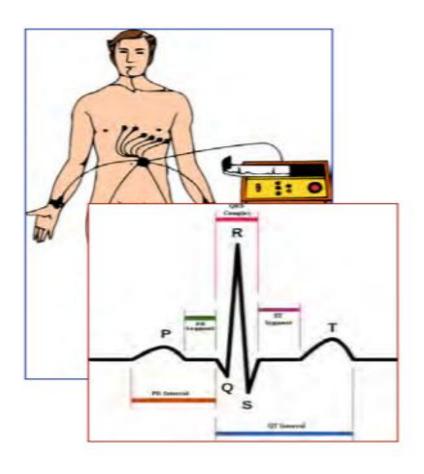
# Synaptic Strength Can Be Increased or Decreased by Externalities

- Synapses: learning elements of the nervous system
  - Action potentials enhanced or inhibited
  - Chemicals can modify signal transfer
  - Potentiation of preand post-synaptic cells
- Adaptation/Learning (potentiation)
  - Short-term
  - Long-term

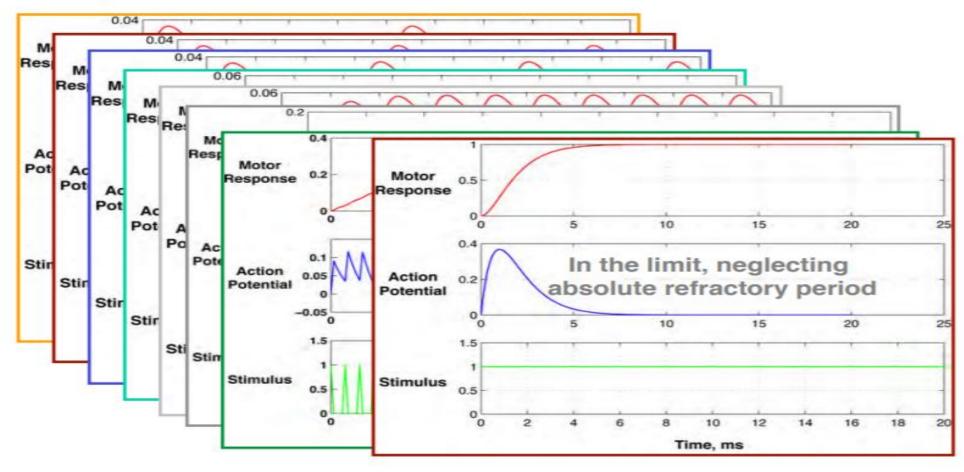


### Cardiac Pacemaker and EKG Signals

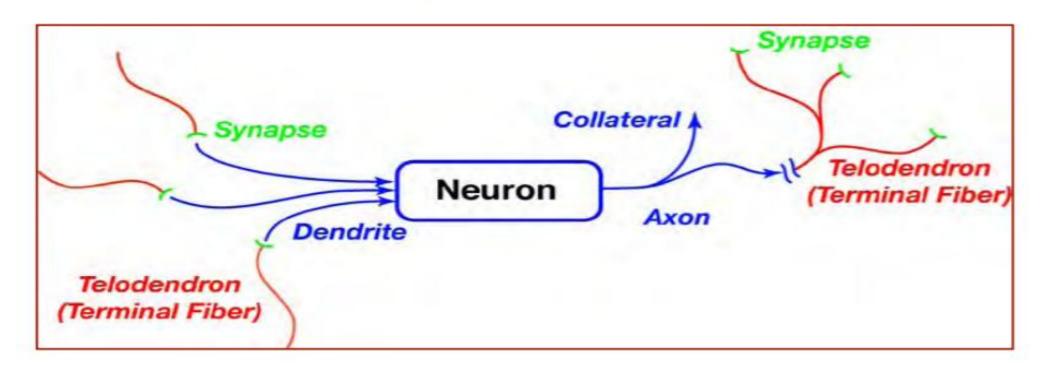




# Impulse, Pulse-Train, and Step Response of LTI 2<sup>nd</sup>-Order Neural Model



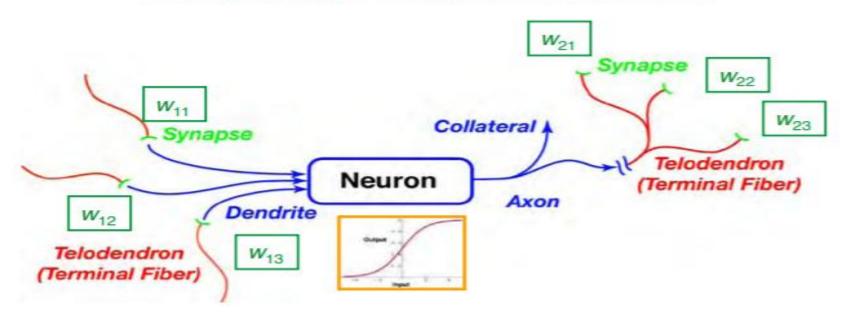
### **Multipolar Neuron**



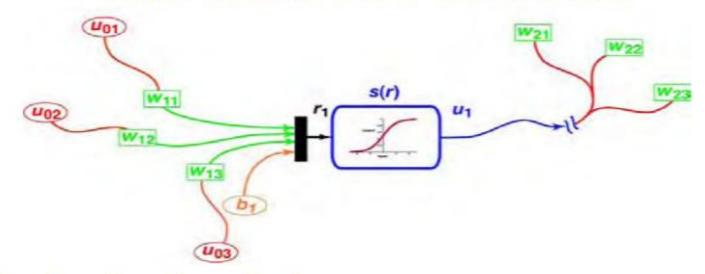
### Mathematical Model of Neuron Components

Synapse effects represented by weights (gains or multipliers)

Neuron firing frequency is modeled by linear gain or nonlinear element



#### **The Neuron Function**

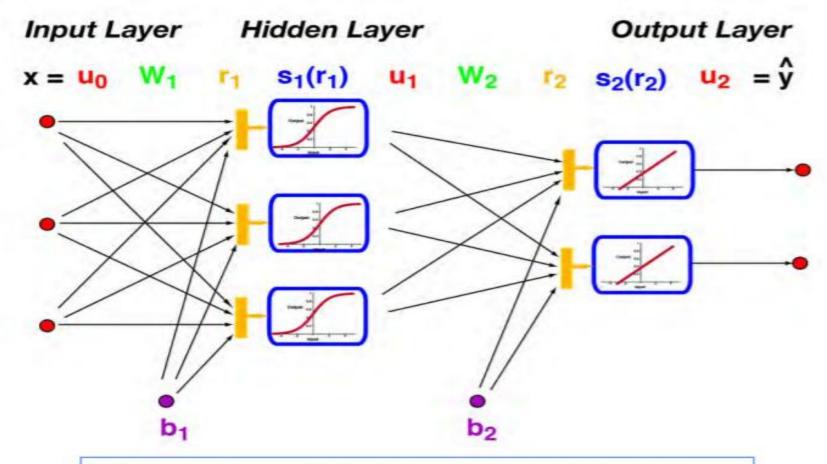


- Vector input, u, to a single neuron
  - Sensory input or output from upstream neurons
- Linear operation produces scalar, r
- Add bias, b, for zero adjustment
- Scalar output, u, of a single neuron (or node)
  - Scalar linear or nonlinear operation, s(r)

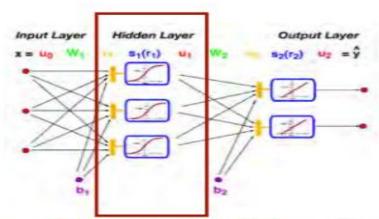
$$r = \mathbf{w}^T \mathbf{u} + b$$

$$u = s(r)$$

#### "Shallow" Neural Network



Layered, parallel structure for computation

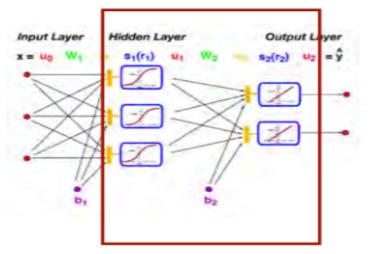


# Input-Output Characteristics of a Neural Network Layer

- Single hidden layer
  - Number of inputs = n
    - $\dim(u) = (n \times 1)$
  - Number of nodes = m
    - $\dim(r) = \dim(b) = \dim(s) = (m \times 1)$

$$r = Wu + b$$
  
 $u = s(r)$ 

$$\mathbf{W} = \begin{bmatrix} \mathbf{w}_1^T \\ \mathbf{w}_2^T \\ \dots \\ \mathbf{w}_n^T \end{bmatrix} = \begin{bmatrix} w_{11} & w_{12} & \cdots & w_{1n} \\ \dots & \dots & \dots \\ w_{m1} & w_{m2} & \cdots & w_{mn} \end{bmatrix}$$



#### **Two-Layer Network**

- Two layers
  - Node functions may be different, e.g.,
    - Sigmoid hidden layer
    - · Linear output layer
  - Number of nodes in each layer need not be the same
- Input sometimes labeled as layer

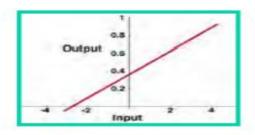
$$\mathbf{y} = \mathbf{u}_{2}$$

$$= \mathbf{s}_{2} (\mathbf{r}_{2}) = \mathbf{s}_{2} (\mathbf{W}_{2} \mathbf{u}_{1} + \mathbf{b}_{2})$$

$$= \mathbf{s}_{2} [\mathbf{W}_{2} \mathbf{s}_{1} (\mathbf{r}_{1}) + \mathbf{b}_{2}]$$

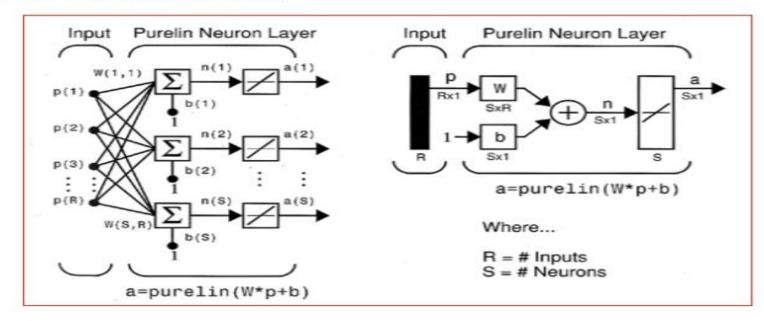
$$= \mathbf{s}_{2} [\mathbf{W}_{2} \mathbf{s}_{1} (\mathbf{W}_{1} \mathbf{u}_{0} + \mathbf{b}_{1}) + \mathbf{b}_{2}]$$

$$= \mathbf{s}_{2} [\mathbf{W}_{2} \mathbf{s}_{1} (\mathbf{W}_{1} \mathbf{x} + \mathbf{b}_{1}) + \mathbf{b}_{2}]$$



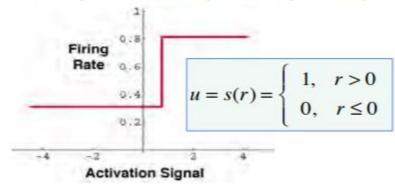
#### **Linear Neural Network**

- Outputs provide linear scaling of inputs
- Equivalent to matrix transformation of a vector, y = Wx + b
- Easy to train (left pseudoinverse, TBD)
- MATLAB symbology

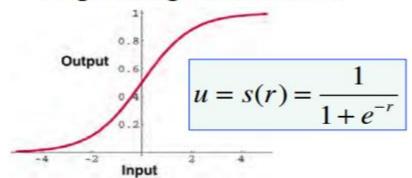


### Idealizations of Nonlinear Neuron Input-Output Characteristic

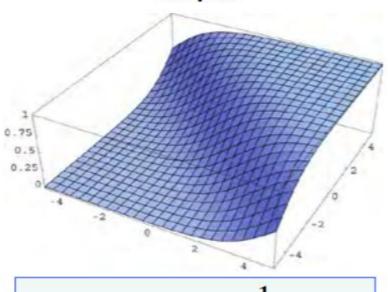
#### Step function ("Perceptron")



#### Logistic sigmoid function

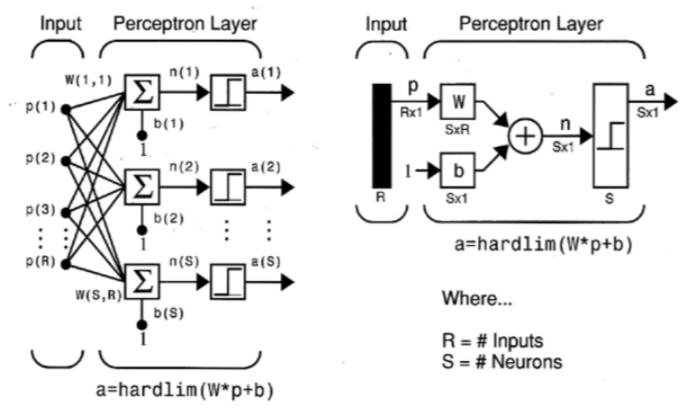


### Sigmoid with two inputs, one output

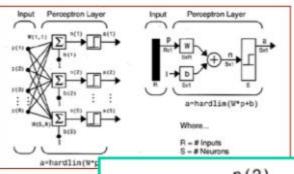


$$u = s(r) = \frac{1}{1 + e^{-(w_1 r_1 + w_2 r_2 + b)}}$$

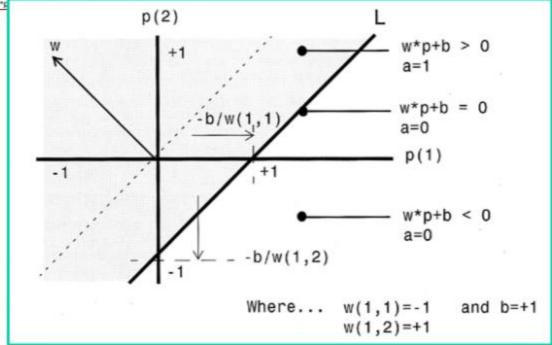
#### **Perceptron Neural Network**



Each node is a step function
Weighted sum of features is fed to each node
Each node produces a linear classification of the input space



### Perceptron Neural Network



Weights adjust slopes
Biases adjust zero crossing points

## Single-Layer, Single-Node Perceptron Discriminants

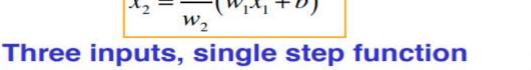
Perceptron Function

$$u = s(\mathbf{w}^T \mathbf{x} + b) = \begin{cases} 1, & (\mathbf{w}^T \mathbf{x} + b) > 0 \\ 0, & (\mathbf{w}^T \mathbf{x} + b) \le 0 \end{cases}$$

Two inputs, single step function
Discriminant

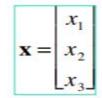
$$0 = w_1 x_1 + w_2 x_2 + b$$
$$x_2 = \frac{-1}{w_2} (w_1 x_1 + b)$$

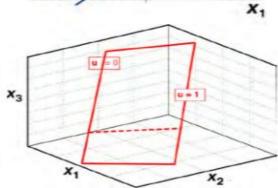
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$



Discriminant
$$0 = w_1 x_1 + w_2 x_2 + w_3 x_3 + b$$

$$0 = w_1 x_1 + w_2 x_2 + w_3 x_3 + b$$
$$x_3 = \frac{-1}{w_3} (w_1 x_1 + w_2 x_2 + b)$$



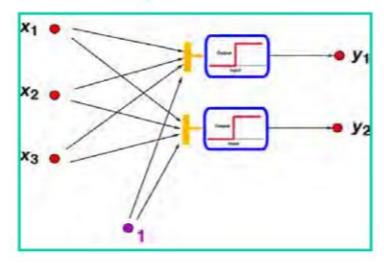


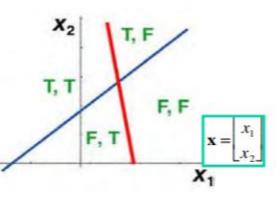
X2

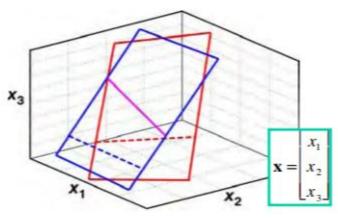
# Single-Layer, Multi-Node Perceptron Discriminants

$$\mathbf{u} = \mathbf{s}(\mathbf{W}\mathbf{x} + \mathbf{b})$$

- Multiple inputs, nodes, and outputs
  - More inputs lead to more dimensions in discriminants
  - More outputs lead to more discriminants



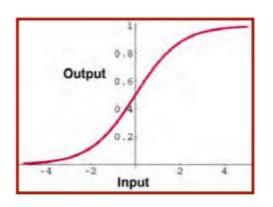




## Multi-Layer Perceptrons Can Classify With Boundaries or Clusters

Classification capability of multi-layer perceptrons
Classifications of classifications
Open or closed regions

| STRUCTURE    | TYPES OF<br>DECISION REGIONS                               | PROBLEM                                        | CLASSES WITH<br>MESHED REGIONS | MOST GENERAL<br>REGION SHAPES |
|--------------|------------------------------------------------------------|------------------------------------------------|--------------------------------|-------------------------------|
| SINGLE LAYER | HALF PLANE<br>BOUNDED<br>BY<br>HYPERPLANE                  | A 8<br>A A                                     |                                |                               |
| TWO-LAYER    | CONVEX<br>OPEN<br>OR<br>CLOSED<br>REGIONS                  | 0                                              |                                |                               |
| THREE LAVER  | ARBITRARY<br>(Complexity<br>Limited By<br>Number of Nodes) | (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c |                                |                               |



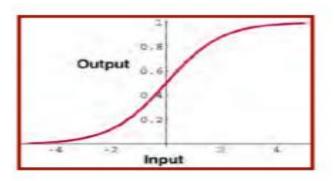
# Sigmoid Activation Functions

- Alternative sigmoid functions
  - Logistic function: 0 to 1
  - Hyperbolic tangent: -1 to 1
  - Augmented ratio of squares: 0 to 1
- Smooth nonlinear functions that limit extreme values in output

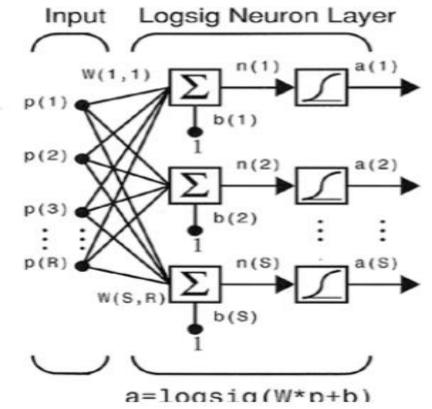
$$u = s(r) = \frac{1}{1 + e^{-r}}$$

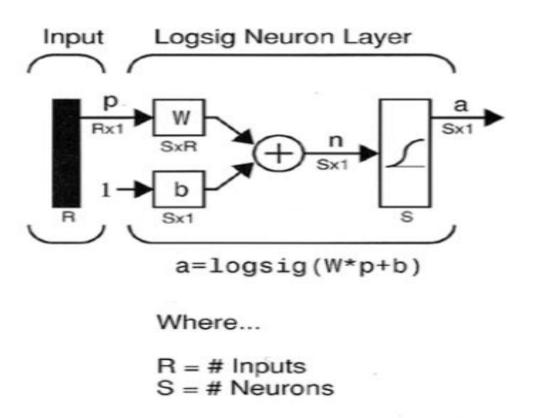
$$u = s(r) = \tanh r = \frac{1 - e^{-2r}}{1 + e^{-2r}}$$

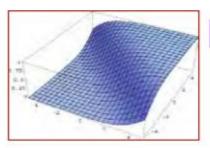
$$u = s(r) = \frac{r^2}{1+r^2}$$



### Single-Layer Sigmoid Neural Network

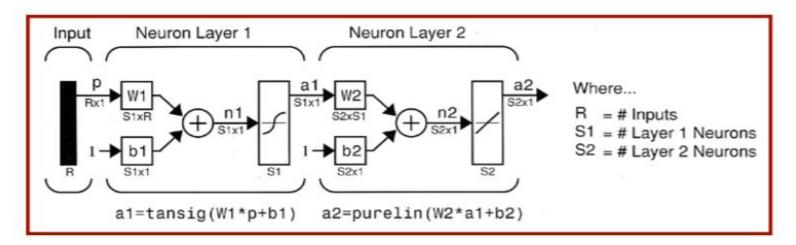


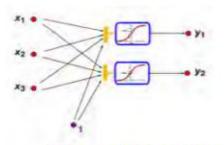




# Fully Connected Two-Layer (Single-Hidden-Layer) Sigmoid Layer

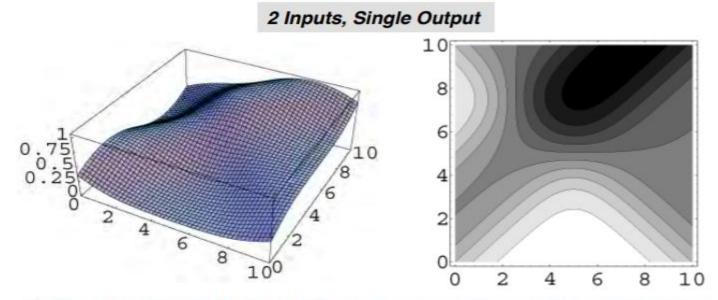
- Sufficient to approximate any continuous function
- All nodes of one layer connected to all nodes of adjacent layers
- Typical sigmoid network contains
  - Single sigmoid hidden layer (nonlinear fit)
  - Single linear output layer (scaling)



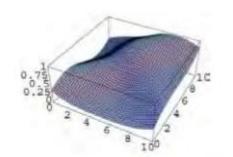


### Typical Output for Two-Sigmoid Network

#### Classification is not limited to linear discriminants

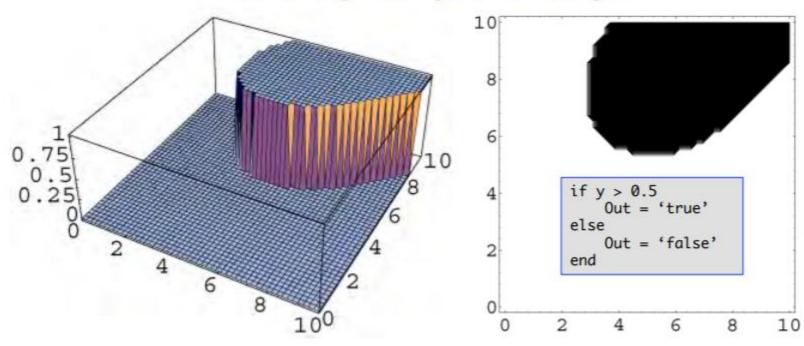


Sigmoid network can approximate a continuous nonlinear function to arbitrary accuracy with a single hidden layer



# Thresholded Neural Network Output

#### Threshold gives "yes/no" output



### Least-Squares Training Example: Single Linear Neuron

- Training set (n members)
  - Target outputs, y<sub>T</sub> (1 x n)
  - m Features (inputs), X (m x n)

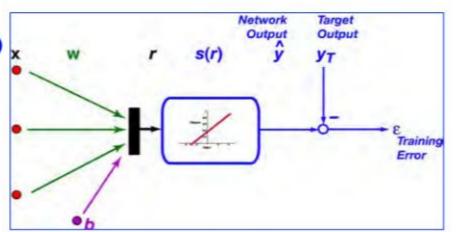
$$\begin{bmatrix} \mathbf{y}_T \\ \mathbf{X} \end{bmatrix} = \begin{bmatrix} y_{T_1} & y_{T_2} & \dots & y_{T_N} \\ x_1 \\ x_2 \\ \dots \\ x_m \end{bmatrix}_1 \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_m \end{bmatrix}_2 \dots \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_m \end{bmatrix}_n \end{bmatrix}$$

Network output, single input

$$\hat{\mathbf{y}}_j = r_j = \hat{\mathbf{w}}^T \mathbf{x}_j + \hat{b}$$

Training error

$$\varepsilon_j = \hat{y}_j - y_T$$



Quadratic error cost

$$J = \frac{1}{2} \sum_{j=1}^{n} \varepsilon_{j}^{2} = \frac{1}{2} \sum_{j=1}^{n} (\hat{y}_{j} - y_{T})^{2} = \frac{1}{2} \sum_{j=1}^{n} (\hat{y}_{j}^{2} - 2\hat{y}_{j} y_{T} + y_{T}^{2})$$

Note: This is an introduction to least-squares **back-propagation training**. Training of a linear neuron more readily accomplished using left pseudoinverse (Lec. 21).

#### **Linear Neuron Gradient**

$$\hat{y}_j = r_j = \mathbf{w}^T \mathbf{x}_j + b$$

$$\frac{d\hat{y}_j}{dr_j} = 1$$

$$\hat{y}_{j} = r_{j} = \mathbf{w}^{T} \mathbf{x}_{j} + b$$

$$\frac{d\hat{y}_{j}}{dr_{i}} = 1$$

$$E_{j} = \hat{y}_{j} - y_{T}$$

$$J = \frac{1}{2} \sum_{j=1}^{n} \varepsilon_{j}^{2} = \frac{1}{2} \sum_{j=1}^{n} (\hat{y}_{j} - y_{T})^{2} = \frac{1}{2} \sum_{j=1}^{n} (\hat{y}_{j}^{2} - 2\hat{y}_{j} y_{T} + y_{T}^{2})$$

- Training (control) parameter, p
  - Input weights, w (n x 1)
  - Bias, b (1 x 1)
- **Optimality condition**

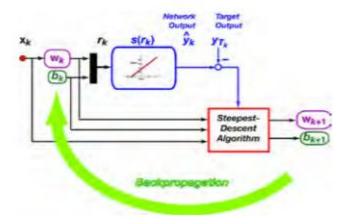
$$\frac{\partial J}{\partial \mathbf{p}} = \mathbf{0}$$

$$\mathbf{p} = \begin{bmatrix} p_1 \\ p_2 \\ \dots \\ p_{n+1} \end{bmatrix} \triangleq \begin{bmatrix} \mathbf{w} \\ b \end{bmatrix}$$

Gradient 
$$\frac{\partial J}{\partial \mathbf{p}} = \frac{1}{2} \sum_{j=1}^{n} (\hat{y}_j - y_T) \frac{\partial y_j}{\partial \mathbf{p}} = \frac{1}{2} \sum_{j=1}^{n} (\hat{y}_j - y_T) \frac{\partial y_j}{\partial r_j} \frac{\partial r_j}{\partial \mathbf{p}}$$

where
$$\frac{\partial r_{j}}{\partial \mathbf{p}} = \begin{bmatrix} \frac{\partial r_{j}}{\partial p_{1}} & \frac{\partial r_{j}}{\partial p_{2}} & \dots & \frac{\partial r_{j}}{\partial p_{n+1}} \end{bmatrix} = \frac{\partial (\mathbf{w}^{T} \mathbf{x}_{j} + b)}{\partial \mathbf{p}} = \begin{bmatrix} \mathbf{x}_{j}^{T} & 1 \end{bmatrix}$$

# Steepest-Descent (Back-propagation) Learning for a Single Linear Neuron



#### Gradient

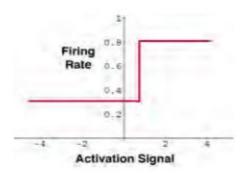
$$\frac{\partial J}{\partial \mathbf{p}} = \frac{1}{2} \sum_{j=1}^{n} (\hat{y}_j - y_T) \begin{bmatrix} \mathbf{x}_j^T & 1 \end{bmatrix} = \frac{1}{2} \sum_{j=1}^{n} [(\mathbf{w}^T \mathbf{x}_j + b) - y_T] \begin{bmatrix} \mathbf{x}_j^T & 1 \end{bmatrix}$$

#### Steepest-descent algorithm

$$\mathbf{p}_{k+1} = \mathbf{p}_k - \eta \left(\frac{\partial J}{\partial \mathbf{p}}\right)_k^T$$

$$\eta = \text{learning rate}$$

$$k = \text{iteration index(epoch)}$$



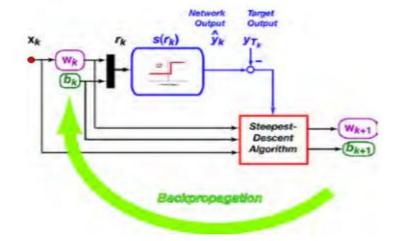
### Steepest-Descent Algorithm for a Single-**Step Perceptron**

#### Neuron output is discontinuous

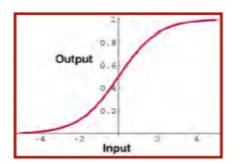
$$\hat{y} = s(r) = \begin{cases} 1, & r > 0 \\ 0, & r \le 0 \end{cases}$$

Binary target output  $y_T = 0$  or 1, for classification

$$(\hat{y}_{jk} - y_{T_k}) = \begin{cases} 1, & \hat{y}_{jk} = 1, & y_{T_k} = 0 \\ 0, & \hat{y}_{jk} = y_{T_k} \\ -1, & \hat{y}_{jk} = 0, & y_{T_k} = 1 \end{cases} \begin{bmatrix} \mathbf{w} \\ b \end{bmatrix}_{k+1} = \begin{bmatrix} \mathbf{w} \\ b \end{bmatrix}_{k} - \eta \sum_{j=1}^{N} [\hat{y}_{jk} - y_{T_k}] \begin{bmatrix} \mathbf{x}_{j} \\ 1 \end{bmatrix}_{k}$$



$$\begin{bmatrix} \mathbf{w} \\ b \end{bmatrix}_{k+1} = \begin{bmatrix} \mathbf{w} \\ b \end{bmatrix}_{k} - \eta \sum_{j=1}^{N} \left[ \hat{y}_{jk} - y_{T_{k}} \right] \begin{bmatrix} \mathbf{x}_{j} \\ 1 \end{bmatrix}_{k}$$



# Training Variables for a Single Sigmoid Neuron

### Neuron output is continuous

$$\hat{y} = s(r) = \frac{1}{1 + e^{-r}}$$

$$= s(\mathbf{w}^T \mathbf{x} + b) = \frac{1}{1 + e^{-(\mathbf{w}^T \mathbf{x} + b)}}$$

#### Training error and quadratic error cost

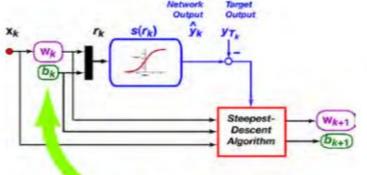
$$\varepsilon_{j} = \hat{y}_{j} - y_{T}$$

$$J = \frac{1}{2} \sum_{j=1}^{n} \varepsilon_{j}^{2} = \frac{1}{2} \sum_{j=1}^{n} (\hat{y}_{j} - y_{T})^{2} = \frac{1}{2} \sum_{j=1}^{n} (\hat{y}_{j}^{2} - 2\hat{y}_{j} y_{T} + y_{T}^{2})$$

#### Neuron output sensitivity to input

$$\frac{d\hat{y}}{dr} = \frac{ds(r)}{dr} = \frac{e^{-r}}{\left(1 + e^{-r}\right)^2} = e^{-r}s^2(r)$$
$$= \left[\left(1 + e^{-r}\right) - 1\right]s^2(r) = \left[\frac{1 - s(r)}{s(r)}\right]s^2(r)$$

$$\frac{d\hat{y}}{dr} = \left[1 - s(r)\right]s(r) = \left(1 - \hat{y}\right)\hat{y}$$



# Back-Propagation Training of a Single Sigmoid Neuron

Backpropagation

$$\frac{\partial J}{\partial \mathbf{p}} = \frac{1}{2} \sum_{j=1}^{N} (\hat{y}_{j} - y_{T}) \frac{\partial \hat{y}_{j}}{\partial r} \frac{\partial r}{\partial \mathbf{p}}$$

$$\mathbf{p}_{k+1} = \mathbf{p}_k - \eta \left( \frac{\partial J}{\partial \mathbf{p}} \right)_k^T$$
or

where
$$r = \mathbf{w}^{T} \mathbf{x} + b$$

$$\frac{d\hat{y}}{dr} = (1 - \hat{y})\hat{y}$$

$$\frac{\partial r}{\partial \mathbf{p}} = \begin{bmatrix} \mathbf{x}^{T} & 1 \end{bmatrix}$$

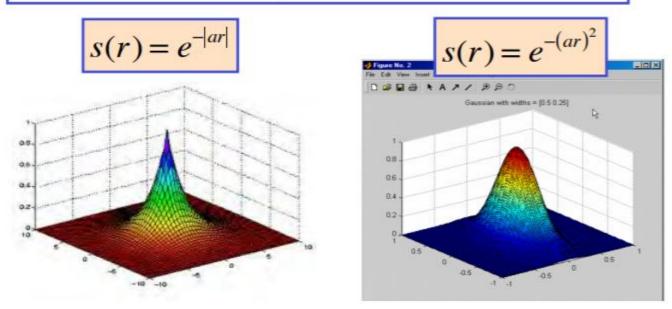
$$\begin{bmatrix} \mathbf{w} \\ b \end{bmatrix}_{k+1} = \begin{bmatrix} \mathbf{w} \\ b \end{bmatrix}_{k} - \eta \sum_{j=1}^{N} \left\{ \left[ \hat{y}_{jk} - y_{T_{k}} \right] (1 - \hat{y}_{k}) \hat{y}_{k} \begin{bmatrix} \mathbf{x}_{j} \\ 1 \end{bmatrix} \right\}_{k}$$

See Supplemental Material for training multiple sigmoids

#### **Radial Basis Function**

Unimodal, axially symmetric function, e.g., exponential

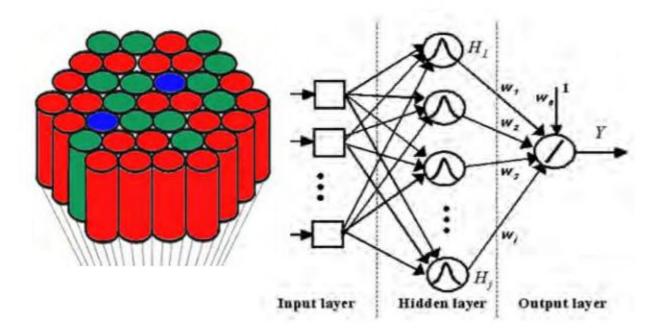
$$s(r) = e^{-|ar|^n}, \quad r = \sqrt{(\mathbf{x} - \mathbf{x}_{center})^T (\mathbf{x} - \mathbf{x}_{center})}$$



Network mimics stimulus field of a neuron receptor, e.g., retina

#### **Radial Basis Function Network**

Array of RBFs typically centered on a fixed grid



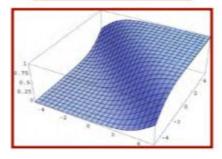
http://en.wikipedia.org/wiki/Radial basis function network

## Sigmoid vs. Radial Basis Function Node

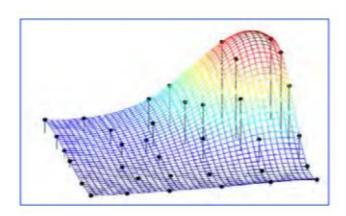
- Considerations for selecting the basis function
  - Prior knowledge of surface to be approximated
  - Global vs. compact support
  - Number of neurons required
  - Training and untraining issues

#### Sigmoid function

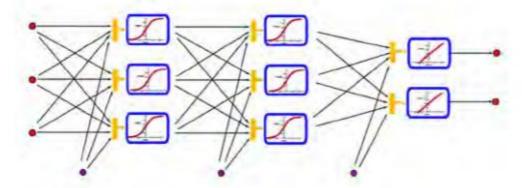
$$s(r) = \frac{1}{1 + e^{-r}}$$



#### Radial basis functions



### "Deep" Sigmoid Network



- Multiple hidden and "visible" layers can improve accuracy in image processing and language translation
- Problem of the "vanishing gradient" in training
- One solution: Convolutional neural network of neuron input/output by incremental training
  - Pooling or clustering signals between layers (TBD)
  - Limited receptive fields for filter (or kernel) nodes
  - Node is activated only when input is within pre-determined bounds