# **FUZZY LOGIC**

# What is Fuzzy Logic

- Fuzzy logic is a mathematical language to express something.
  - This means it has grammar, syntax, semantic like a language for communication.
- There are some other mathematical languages also known
  - Relational algebra (operations on sets)
  - Boolean algebra (operations on Boolean variables)
  - Predicate algebra (operations on well formed formulae (wff), also called predicate propositions)
- Fuzzy logic deals with Fuzzy set or Fuzzy algebra.

# What is Fuzzy

Dictionary meaning of fuzzy is not clear, noisy, etc.

Example: Is the picture on this slide is fuzzy?

Antonym of fuzzy is crisp

Example: Are the chips crisp?



## Example: Fuzzy logic vs. Crisp logic



10000

NOTEL ONLINE

**Debasis Samanta** 

## Example: Fuzzy logic vs. Crisp logic



## Example: Fuzzy logic vs. Crisp logic



## World is fuzzy!



# Concept of fuzzy system Fuzzy element(s) Fuzzy sets Fuzzy rules Fuzzy implications (Inferences) 0 Fuzzy system

### Concept of fuzzy set

To understand the concept of **fuzzy set** it is better, if we first clear our idea of **crisp set**.

X = The entire population of India.

 $H = All Hindu population = \{h_1, h_2, h_3, \dots, h_L, \}$ 

 $M = All Muslim population = \{m_1, m_2, m_3, \dots, m_N, \}$ 



Here, All are the sets of finite numbers of individuals. Such a set is called crisp set.

### Example of fuzzy set

Let us discuss about fuzzy set.

X = All students in NPTEL.

S = All Good students.

 $S = \{(s, g(s)) \mid s \in X\}$  and g(s) is a measurement of goodness of the student s.

#### Example:

 $S = \{ (Rajat, 0.8), (Kabita, 0.7), (Salman, 0.1), (Ankit, 0.9) \}, etc.$ 

## Fuzzy set vs. Crisp set

| Crisp set                                                                                                          | Fuzzy set                                                                                               |  |  |
|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|--|
| $ S = \{s   s \in X\} $                                                                                            | • $F = (s, \mu(s)) s \in X$ and $\mu(s)$ is the degree of $s$ .                                         |  |  |
| <ul> <li>It is a collection of elements.</li> </ul>                                                                | <ul> <li>It is a collection of ordered pairs.</li> </ul>                                                |  |  |
| <ul> <li>Inclusion of an element s ∈ X into S<br/>is crisp, that is, has strict boundary<br/>yes or no.</li> </ul> | ■ Inclusion of an element s ∈ X into F is fuzzy, that is, if present, then with a degree of membership. |  |  |

### Fuzzy set vs. Crisp set

Note: A crisp set is a fuzzy set, but, a fuzzy set is not necessarily a crisp set.

#### Example:

$$H = \{(h_1, 1), (h_2, 1) \dots \dots (h_L, 1)\}$$

$$Person = \{(p_1, 0), (p_2, 0) \dots \dots (p_N, 0)\}$$

In case of a crisp set, the elements are with extreme values of degree of membership namely either 1 or 0.

## Degree of membership

How to decide the degree of memberships of elements in a fuzzy set?

| City | Bangalore | Bombay | Hyderabad | Kharagpur | Madras | Delhi |
|------|-----------|--------|-----------|-----------|--------|-------|
| μ    | 0.95      | 0.90   | 0.80      | 0.01      | 0.65   | 0.75  |

How the cities of comfort can be judged?

### Example: Course evaluation in a crisp way

 $EX: Marks \ge 90$ 

 $A: 80 \leq Marks < 90$ 

 $B: 70 \leq Marks < 80$ 

 $C: 60 \leq Marks < 70$ 

 $D: 50 \le Marks < 60$ 

 $P: 35 \leq Marks < 50$ 

 $F: Marks \leq 35$ 



## Few examples of fuzzy set

- High Temperature
- · Low Pressure
- · Colour of Apple
- Sweetness of Orange
- · Weight of Mango

Note: Degree of membership values lie in the range [0...1].

### Some basic terminologies and notations

### **Definition 1: Membership function (and Fuzzy set)**

If X is a universe of discourse and  $x \in X$ , then a fuzzy set A in X is defined as a set of ordered pairs, that is  $A = \{(x, \mu_A(x)) | x \in X\}$  where  $\mu_A(x)$  is called the membership function for the fuzzy set A.

**Note:**  $\mu_A(x)$  map each element of X onto a membership grade (or membership value) between 0 and 1 (both inclusive).

**Question**: How (and who) decides  $\mu_A(x)$  for a fuzzy set A in X?

## Some basic terminologies and notations

### Example:

```
X = All cities in India
```

A = City of comfort

```
A={(New Delhi, 0.7), (Bangalore, 0.9), (Chennai, 0.8), (Hyderabad, 0.6), (Kolkata, 0.3), (Kharagpur, 0)}
```

# Membership function with discrete membership values

The membership values may be of discrete values.



# Membership function with discrete membership values

Either elements or their membership values (or both) also may be of discrete values.



$$A = \{(0,0.1),(1,0.30),(2,0.78).....(10,0.1)\}$$

Note : X = discrete value

How you measure happiness ??

# Membership function with continuous membership values



### **Fuzzy terminologies: Support**

**Support**: The support of a fuzzy set A is the set of all points  $x \in X$  such that  $\mu_A(X) > 0$ 



### **Fuzzy terminologies: Core**

**Core**: The core of a fuzzy set A is the set of all points x in X such that  $\mu_A(X) = 1$ 



### **Fuzzy terminologies: Normality**

**Normality**: A fuzzy set A is a normal if its core is non-empty. In other words, we can always find a point  $x \in X$  such that  $\mu_A(X) = 1$ 



### Fuzzy terminologies: Crossover points

**Crossover point**: A crossover point of a fuzzy set A is a point  $x \in X$  at which  $\mu_A(X) = 0.5$ . That is Crossover (A) = $\{x | \mu_A(x) = 0.5\}$ 



# **Fuzzy terminologies: Fuzzy Singleton**

**Fuzzy Singleton**: A fuzzy set whose support is a single point in X with  $\mu_A(x)=1$  is called a fuzzy singleton. That is  $|A|=\{x|\mu_A(x)=1\}$ 



# Fuzzy terminologies: $\alpha$ -cut and strong $\alpha$ -cut

### $\alpha$ -cut and strong $\alpha$ -cut :

✓ The  $\alpha$ -cut of a fuzzy set A is a crisp set defined by

$$A_{\alpha} = \{x | \mu_A(x) \ge \alpha\}$$

✓ Strong  $\alpha$ -cut is defined similarly :

$$A'_{\alpha} = \{x | \mu_A(x) > \alpha\}$$

**Note**: Support (A) =  $A_0$ ' and Core (A) =  $A_1$ .

# Fuzzy terminologies: Bandwidth

#### Bandwidth:

For a fuzzy set, the bandwidth (or width) is defined as the distance between the two unique crossover points:

Bandwidth 
$$(A) = |x_1 - x_2|$$

where 
$$\mu_A(x_1) = \mu_A(x_2) = 0.5$$

# **Fuzzy terminologies: Symmetry**

### Symmetry:

A fuzzy set A is symmetric if its membership function around a certain point x = c,

namely  $\mu_A(x+c) = \mu_A(x-c)$  for all  $x \in X$ 



## Fuzzy terminologies: Open and Closed

A fuzzy set A is

**Open left**: If  $\lim x \to -\infty \mu_A(x) = 1$  and  $\lim x \to +\infty \mu_A(x) = 0$ 

Open right: If  $\lim x \to -\infty \mu_A(x) = 0$  and  $\lim x \to +\infty \mu_A(x) = 1$ 

Closed: If  $\lim x \to -\infty \mu_A(x) = \lim x \to +\infty \mu_A(x) = 0$ 



# Fuzzy vs. Probability

Fuzzy: When we say about certainty of a thing

Example: A patient come to the doctor and he has to diagnose so that medicine can be prescribed.

Doctor prescribed a medicine with certainty 60% that the patient is suffering from flue. So, the disease will be cured with certainty of 60% and uncertainty 40%. Here, in stead of flue, other diseases with some other certainties may be.

Probability: When we say about the chance of an event to occur

Example: India will win the T20 tournament with a chance 60% means that out of 100 matches, India own 60 matches.

# Prediction vs. Forecasting

The Fuzzy vs. Probability is analogical to Prediction vs. Forecasting

Prediction: When you start guessing about things.

Forecasting: When you take the information from the past job and apply it to new job.

### The main difference:

**Prediction** is based on the best guess from experiences.

Forecasting is based on data you have actually recorded and packed from previous job.

# **FUZZY LOGIC**

Lecture-3

# **Fuzzy membership functions**

A fuzzy set is completely characterized by its membership function (sometimes abbreviated as MF and denoted as  $\mu$  ). So, it would be important to learn how a membership function can be expressed (mathematically or otherwise).

**Note:** A membership function can be on

- a) a discrete universe of discourse and
- a continuous universe of discourse.



# **Fuzzy membership functions**

So, membership function on a discrete universe of course is trivial. However, a membership function on a continuous universe of discourse needs a special attention.

Following figures show some typical examples of membership functions.



# Fuzzy MFs: Formulation and parameterization

In the following, we try to parameterize the different MFs on a continuous universe of discourse.

**Triangular MFs**: A triangular MF is specified by three parameters  $\{a, b, c\}$  and can be formulated as follows.



### Fuzzy MFs: Trapezoidal

A **trapezoidal MF** is specified by four parameters  $\{a, b, c, d\}$  and can be defined as follows:



trapozoid 
$$(x; a, b, c, d) =$$

$$\begin{cases}
0 & \text{if } x \le a \\
\frac{x - a}{b - a} & \text{if } a \le x \le b \\
1 & \text{if } b \le x \le c \\
\frac{d - x}{d - c} & \text{if } c \le x \le d \\
0 & \text{if } d \le x
\end{cases}$$

# Fuzzy MFs: Gaussian

A **Gaussian MF** is specified by two parameters  $\{c, \sigma\}$  and can be defined as below:

gaussian 
$$(x; c, \sigma) = e^{-\frac{1}{2}\left(\frac{x-c}{\sigma}\right)^2}$$



## Fuzzy MFs: Generalized bell

It is also called Cauchy MF. A generalized bell MF is specified by three parameters  $\{a, b, c\}$  and is defined as:

$$bell(x; a, b, c) = \frac{1}{1 + \left| \frac{x - c}{a} \right|^{2b}}$$



# **Example: Generalized bell MFs**

Example: 
$$\mu(x) = \frac{1}{1+|x|^2}$$
;

$$a = b = 1$$
 and  $c = 0$ ;



## Generalized bell MFs: Different shapes



## Fuzzy MFs: Sigmoidal MFs

Parameters:  $\{a, c\}$ ; where c = crossover point and a = slope at c;



# **Fuzzy MFs : Example**

Example: Consider the following grading system for a course.

Excellent = Marks ≤ 90

Very good =  $75 \le Marks \le 90$ 

Good =  $60 \le Marks \le 75$ 

Average =  $50 \le Marks \le 60$ 

Poor =  $35 \le Marks \le 50$ 

Bad= Marks ≤ 35

### **Grading System**

A fuzzy implementation will look like the following.



You can decide a standard fuzzy MF for each of the fuzzy grade.



# **Few More on Membership Functions**

### Generation of MFs

Given a membership function of a fuzzy set representing a linguistic hedge, we can derive many more MFs representing several other linguistic hedges using the concept of Concentration and Dilation.

- 1. Concentration:  $A^k = [\mu_A(x)]^k$ ; k > 1
- **2.** Dilation:  $A^k = [\mu_A(x)]^k$ ; k < 1

Example: Age = { Young, Middle-aged, Old }

Thus, corresponding to Young, we have: Not young, Very young, Not very young and so on. Similarly, with Old we can have: Not old, Very old, Very very old, Extremely old, etc.

Thus, 
$$\mu_{Extremely\ old}(x) = (((\mu_{old}(x))^2)^2)^2$$
 and so on

Or, 
$$\mu_{More\ or\ less\ old}(x) = A^{0.5} = (\mu_{old}(x))^{0.5}$$

### Linguistic variables and values

$$\mu_{young}(x) = \text{bell(x,20,2,0)} = \frac{1}{1 + (\frac{x}{20})^4}$$

$$\mu_{old}(x) = \text{bell(x,30,3,100)} = \frac{1}{1 + (\frac{x - 100}{30})^6}$$

$$\mu_{middle-aged}(x) = bell(x,30,60,50)$$

Not young=
$$\overline{\mu_{young}(x)} = 1 - \mu_{young}(x)$$



Young but not too young =  $\mu_{young}(x) \cap \overline{\mu_{young}(x)}$ 

# **FUZZY LOGIC**

Lecture-4

# Introduction to Soft Computing

Operations on Fuzzy sets

### Basic fuzzy set operations: Union

Union (A U B): 
$$\mu_{A\cup B}(x) = \max(\mu_A(x), \mu_B(x))$$

$$A = \{(x_1, 0.5), (x_2, 0.1), (x_3, 0.4)\}$$
 and  $B = \{(x_1, 0.2), (x_2, 0.3), (x_3, 0.5)\};$   $C = A \cup B = \{(x_1, 0.5), (x_2, 0.3), (x_3, 0.5)\}$ 





### Basic fuzzy set operations: Intersection

**Intersection (A** 
$$\cap$$
 B):  $\mu_{A \cap B}(x) = \min(\mu_A(x), \mu_B(x))$ 

$$A = \{(x_1, 0.5), (x_2, 0.1), (x_3, 0.4)\}$$
 and  
 $B = \{(x_1, 0.2), (x_2, 0.3), (x_3, 0.5)\};$   
 $C = A \cap B = \{(x_1, 0.2), (x_2, 0.1), (x_3, 0.4)\}$ 





## Basic fuzzy set operations: Complement

Complement (
$$A^c$$
):  $\mu_{A^c}(x) = 1 - \mu_A(x)$ 

$$A = \{(x_1, 0.5), (x_2, 0.1), (x_3, 0.4)\}$$

$$C = A^c = \{(x_1, 0.5), (x_2, 0.9), (x_3, 0.6)\}$$





# Basic fuzzy set operations: Products

Algebric product or Vector product  $(A \cdot B)$ :

$$\mu_{A \cdot B}(x) = \mu_A(x) \cdot \mu_B(x)$$

Scalar product  $(\alpha \times A)$ :

$$\mu_{\alpha A}(x) = \alpha \times \mu_A(x)$$

# Basic fuzzy set operations: Sum and Difference

$$\mu_{A+B}(x) = \mu_A(x) + \mu_B(x) - \mu_A(x) \cdot \mu_B(x)$$

Difference  $(A - B = A \cap B^C)$ :

$$\mu_{A-B}(x) = \mu_{A\cap B}c(x)$$

### Disjunctive sum:

$$A \oplus B = (A^C \cap B) \cup (A \cap B^C)$$

#### **Bounded Sum:**

$$|A(x) \oplus B(x)| = \mu_{|A(x) \oplus B(x)|} = \min\{1, \mu_A(x) + \mu_B(x)\}\$$

#### **Bounded Difference:**

$$|A(x) \ominus B(x)| = \mu_{|A(x) \ominus B(x)|} = \max\{0, \mu_A(x) + \mu_B(x) - 1\}$$

### Basic fuzzy set operations: Equality and Power

Equality (A = B):

$$\mu_A(x) = \mu_B(x)$$

Power of a fuzzy set  $A^{\alpha}$ :

$$\mu_{A^{\alpha}}(x) = (\mu_{A}(x))^{\alpha}$$

- ✓ If  $\alpha$  < 1, then it is called dilation
- ✓ If  $\alpha > 1$ , then it is called concentration

### Basic fuzzy set operations: Cartesian product

Caretsian Product 
$$(A \times B)$$
:  $\mu_{A \times B}(x, y) = \min(\mu_A(x), \mu_B(y))$ 

$$A(x) = \{(x_1, 0.2), (x_2, 0.3), (x_3, 0.5), (x_4, 0.6)\}$$
  

$$B(y) = \{(y_1, 0.8), (y_2, 0.6), (y_3, 0.3)\}$$

$$A \times B = \min(\mu_A(x), \mu_B(y)) = \begin{cases} x_1 \\ x_2 \\ x_3 \\ x_4 \end{cases} \begin{bmatrix} 0.2 & 0.2 & 0.2 \\ 0.3 & 0.3 & 0.3 \\ 0.5 & 0.5 & 0.3 \\ 0.6 & 0.6 & 0.3 \end{bmatrix}$$

### Properties of fuzzy sets

### Commutativity:

$$A \cap B = B \cap A$$
$$A \cup B = B \cup A$$

### Associativity:

$$A \cup (B \cup C) = (A \cup B) \cup C$$
  
 $A \cap (B \cap C) = (A \cap B) \cap C$ 

### Distributivity:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
  
 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ 

# Properties of fuzzy sets

### Idempotence:

$$A \cup A = A$$
  
 $A \cap A = \emptyset$ ;  
 $A \cup \emptyset$ ;  $= A$   
 $A \cap \emptyset$ ;  $= \emptyset$ ;

Transitivity:

If 
$$A \subseteq B$$
;  $B \subseteq C$  then  $A \subseteq C$ 

Involution:

$$(A^c)^c = A$$

De Morgan's law:

$$(A \cap B)^c = A^c \cup B^c$$
$$(A \cup B)^c = A^c \cap B^c$$

## **Example 1: Fuzzy Set Operations**

Let A and B are two fuzzy sets defined over a universe of discourse X with membership functions  $\mu_A(x)$  and  $\mu_B(x)$ , respectively. Two MFs  $\mu_A(x)$  and  $\mu_B(x)$  are shown graphically.



### Example 1: Plotting two sets on the same graph

Let's plot the two membership functions on the same graph



### **Example 1: Union and Intersection**

The plots of union  $A \cup B$  and intersection  $A \cap B$  are shown in the following.



# **Example 1: Complementation**

The plots of union  $\mu_{\bar{A}}(x)$  of the fuzzy set A is shown in the following.





# Fuzzy set operations: Practice

Consider the following two fuzzy sets A and B defined over a universe of discourse [0,5] of real numbers with their membership functions

$$\mu_A(x) = \frac{x}{1+x}$$
 and  $\mu_B(x) = 2^{-x}$ 

Determine the membership functions of the following and draw them graphically.

- I.  $\bar{A}$ ,  $\bar{B}$
- II.  $A \cup B$
- III.  $A \cap B$
- IV.  $(A \cup B)^c$

[Hint: Use De' Morgan law]

Two fuzzy sets A and B with membership functions  $\mu_A(x)$  and  $\mu_B(x)$ , respectively defined as below.

A = Cold climate with  $\mu_A(x)$  as the MF.

B = Hot climate with  $\mu_B(x)$  as the M.F.

Here, X being the universe of discourse representing entire range of temperatures.



What are the fuzzy sets representing the following?

- 1. Not cold climate
- 2. Not hot climate
- 3. Extreme climate
- 4. Pleasant climate

Note: Note that "Not cold climate" ≠ "Hot climate" and vice-versa.

Answer would be the following.

✓ Not cold climate

 $\bar{A}$  with  $1 - \mu_A(x)$  as the MF.

✓ Not hot climate

 $\bar{B}$  with  $1 - \mu_B(x)$  as the MF.

✓ Extreme climate

A  $\cup$  B with  $\mu_{A \cup B}(x) = \max(\mu_A(x), \mu_B(x))$  as the MF.

✓ Pleasant climate

 $A \cap B$  with  $\mu_{A \cap B}(x) = \min(\mu_A(x), \mu_B(x))$  as the MF.

The plot of the MFs of A  $\cup$  B and A  $\cap$  B are shown in the following.



