Fuzzy Propositions

Fuzzy Propositions

- Two-valued logic vs. Multi-valued logic
- Examples of Fuzzy proposition
- Fuzzy proposition vs. Crisp proposition
- Canonical representation of Fuzzy proposition
- Graphical interpretation of Fuzzy proposition

Two-valued logic vs. Multi-valued logic

- The basic assumption upon which crisp logic is based that every proposition is either TRUE or FALSE.
- The classical two-valued logic can be extended to multi-valued logic.
- As an example, three valued logic to denote true(1), false(0) and indeterminacy (1/2).

Two-valued logic vs. Multi-valued logic

Different operations with three-valued logic can be extended as shown in the

truth table:

а	b	٨	٧	$\neg a$	\Rightarrow	=
0	0	0	0	1	1	1
0	1/4	0	1/2	1	1	1/4
0	1	0	1	1	1	0
1/4	0	0	1/4	1/2	1/4	1/4
%	1/4	1/4	1/4	%	%	1
1/4	1	1/4	1	1/2	1	1/4
1	0	0	1	0	0	0
1	1/4	1/4	1	0	%	1/2
1	1	1	1	0	1	1

Fuzzy connectives used in the above table are:

- AND (Λ)
- OR (V)
- NOT (¬)
- IMPLICATION (⇒) and
- EQUAL (=)

Three-valued logic

Fuzzy connectives defined for such a three-valued logic better can be stated as follows:

Symbol	Connective	Usage	Definition
7	NOT	¬P	1-T(P)
V	OR	PVQ	$max\{T(P),T(Q)\}$
٨	AND	$P \wedge Q$	$min\{T(P),T(Q)\}$
\Rightarrow	IMPLICATION	$(P \Rightarrow Q)or(\neg P \lor Q)$	$\max\{(1-T(P)),T(Q)\}$
=	EQUALITY	$(P = Q)or[(P \Rightarrow Q) \land (Q \Rightarrow P)]$	1 - T(P) - T(Q)

Fuzzy proposition: Example 1

P: Ram is honest

T(P) = 0.0

T(P) = 0.2

T(P) = 0.4

T(P) = 0.6

T(P) = 0.8

T(P) = 1.0

: Absolutely false

: Partially false

: May be false or not false

: May be true or not true

: Partially true

: Absolutely true.

Fuzzy proposition: Example 2

P: Mary is efficient; T(P) = 0.8

Q: Ram is efficient; T(Q) = 0.6

Mary is not efficient.

$$T(\neg P) = 1 - T(P) = 0.2$$

Mary is efficient and so is Ram.

$$T(P \land Q) = min\{T(P), T(Q)\} = 0.6$$

CB

Fuzzy proposition: Example 2

P: Mary is efficient; T(P) = 0.8

Q: Ram is efficient; T(Q) = 0.6

Either Mary or Ram is efficient

$$T(P \lor Q) = max\{T(P), T(Q)\} = 0.8$$

If Mary is efficient then so is Ram

$$T(P \implies Q) = \max\{1 - T(P), T(Q)\} = 0.6$$

Fuzzy proposition vs. Crisp proposition

- The fundamental difference between crisp (classical) proposition and fuzzy propositions is in the range of their truth values.
- While each classical proposition is required to be either true or false, the truth or falsity of fuzzy proposition is a matter of degree.
- The degree of truth of each fuzzy proposition is expressed by a value in the interval [0,1] both inclusive.

Canonical representation of Fuzzy proposition

Suppose, X is a universe of discourse of five persons. Intelligent
of x ∈ X is a fuzzy set as defined below.

Intelligent:
$$\{(x_1, 0.3), (x_2, 0.4), (x_3, 0.1), (x_4, 0.6), (x_5, 0.9)\}$$

We define a fuzzy proposition as follows:

$$P: x$$
 is Intelligent

 The canonical form of fuzzy proposition of this type, P is expressed by the sentence P: v is F.

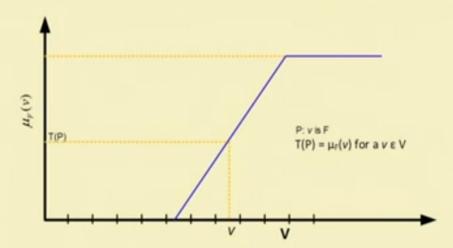
Canonical representation of Fuzzy proposition

· Predicate in terms of fuzzy set.

 $P: v ext{ is } F$; where $v ext{ is an element that takes values } v ext{ from some universal set } V ext{ and } F ext{ is a fuzzy set on } V ext{ that represents a fuzzy predicate.}$

• In other words, given, a particular element v, this element belongs to F with membership grade $\mu_F(v)$.

Graphical interpretation of fuzzy proposition



✓ For a given value v of variable V in proposition P, T(P) denotes the degree of truth of proposition P.