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 Inspired from the nature social behavior and dynamic 

movements with communications of insects, birds and 

fish



 In 1986, Craig Reynolds described this process in 3 

simple behaviors:

Separation

avoid crowding local 

flockmates

Alignment

move towards the average 

heading of local 

flockmates

Cohesion

move toward the average 

position of local 

flockmates 



 Application to optimization:  Particle Swarm 

Optimization

 Proposed by James Kennedy & Russell Eberhart (1995)

 Combines self-experiences with social experiences



 Uses a number of agents (particles) 

that constitute a swarm moving 

around in the search space looking 

for the best solution

 Each particle in search space adjusts 

its “flying” according to its own 

flying experience as well as the 

flying experience of other particles



 Collection of flying particles (swarm) - Changing 

solutions

 Search area - Possible solutions

 Movement towards a promising area to get the global 

optimum

 Each particle keeps track:

• its best solution, personal best, pbest

• the best value of any particle, global best, gbest



 Each particle adjusts its travelling speed 

dynamically corresponding to the flying 

experiences of itself and its colleagues

 Each particle modifies its 

position according to:

• its current position

• its current velocity

• the distance between its 

current position and pbest

• the distance between its 

current position and gbest



geographical

social



global



 Algorithm parameters

• A : Population of agents

• pi : Position of agent ai in the solution space

• f : Objective function 

• vi : Velocity of agent’s ai

• V(ai) : Neighborhood of agent ai (fixed)

 The neighborhood concept in PSO is not the same as 

the one used in other meta-heuristics search, since in 

PSO each particle’s neighborhood never changes (is 

fixed)



[x*] = PSO()

P = Particle_Initialization();

For i=1 to it_max

For each particle p in P do

fp = f(p); 

If fp is better than f(pBest) 

pBest = p;

end

end

gBest = best p in P;

For each particle p in P do

v = v + c1*rand*(pBest – p) + c2*rand*(gBest – p);

p = p + v; 

end

end



 Particle update rule

p = p + v

 with

v = v + c1 * rand * (pBest – p) + c2 * rand * (gBest – p)

 where

• p: particle’s position

• v: path direction

• c1: weight of local information 

• c2: weight of global information

• pBest: best position of the particle

• gBest: best position of the swarm

• rand: random variable



 Number of particles usually between 10 and 50

 C1 is the importance of personal best value

 C2 is the importance of neighborhood best value

 Usually C1 + C2 = 4 (empirically chosen value)

 If velocity is too low → algorithm too slow

 If velocity is too high → algorithm too unstable  



1. Create a ‘population’ of agents (particles) uniformly 

distributed over X 

2. Evaluate each particle’s position according to the 

objective function

3. If a particle’s current position is better than its previous 

best position, update it

4. Determine the best particle (according to the particle’s 

previous best positions)



5. Update particles’ velocities:

6. Move particles to their new positions:

7. Go to step 2 until stopping criteria are satisfied



Particle’s velocity:

• Makes the particle move in the same 
direction and with the same velocity

1. Inertia

2. Personal 

Influence

3. Social 

Influence

• Improves the individual
• Makes the particle return to a previous 

position, better than the current
• Conservative

• Makes the particle follow the best 
neighbors direction



 Intensification: explores the previous solutions, finds 

the best solution of a given region

 Diversification: searches new solutions, finds the 

regions with potentially the best solutions

 In PSO:



















 Advantages

• Insensitive to scaling of design variables

• Simple implementation

• Easily parallelized for concurrent processing

• Derivative free

• Very few algorithm parameters

• Very efficient global search algorithm

 Disadvantages

• Tendency to a fast and premature convergence in mid optimum 
points

• Slow convergence in refined search stage (weak local search 
ability)



 Several approaches

• 2-D Otsu PSO

• Active Target PSO

• Adaptive PSO

• Adaptive Mutation PSO

• Adaptive PSO Guided by Acceleration Information 

• Attractive Repulsive Particle Swarm Optimization

• Binary PSO

• Cooperative Multiple PSO

• Dynamic and Adjustable PSO

• Extended Particle Swarms 

• …

Davoud Sedighizadeh and Ellips Masehian, “Particle Swarm Optimization Methods, Taxonomy and Applications”.

International Journal of Computer Theory and Engineering, Vol. 1, No. 5, December 2009



On solving Multiobjective Bin Packing 

Problem Using Particle Swarm Optimization

D.S Liu, K.C. Tan, C.K. Goh and W.K. Ho

2006 - IEEE Congress on Evolutionary Computation

 First implementation of PSO for BPP



 Multi-Objective 2D BPP

 Maximum of I bins with width W and height H

 J items with wj ≤ W, hj ≤ H and weight ψj

 Objectives

• Minimize the number of bins used K

• Minimize the average deviation between the 

overall centre of gravity and the desired one



 Usually generated randomly

 In this work:

• Solution from Bottom Left Fill (BLF) heuristic

• To sort the rectangles for BLF:

 Random

 According to a criteria (width, weight, area, perimeter..)



Item moved to the right if

intersection detected at the top

Item moved to the top if

intersection detected at the right

Item moved if there is a lower 

available space for insertion



 Velocity depends on either pbest or gbest: 

never both at the same time

OR



1st Stage:

• Partial Swap between 2 bins

• Merge 2 bins

• Split 1 bin

2nd Stage:

• Random rotation

3rd Stage:

• Random shuffle

Mutation modes for a single particle



The flowchart of HMOPSO

H hybrid

M multi

S swarm

O objective

P particle

O optimization



 6 classes with 20 instances randomly generated

 Size range:

• Class 1: [0, 100]

• Class 2: [0, 25]

• Class 3: [0, 50]

• Class 4: [0, 75]

• Class 5: [25, 75]

• Class 6: [25, 50]

 Class 2: small items → more difficult to pack



 Comparison with 2 other methods

• MOPSO (Multiobjective PSO) from [1]

• MOEA (Multiobjective Evolutionary Algorithm) from [2]

 Definition of parameters:

[1] Wang, K. P., Huang, L., Zhou C. G. and Pang, W., “Particle Swarm Optimization for Traveling Salesman Problem,” 

International Conference on Machine Learning and Cybernetics, vol. 3, pp. 1583-1585, 2003.

[2] Tan, K. C., Lee, T. H., Chew, Y. H., and Lee, L. H., “A hybrid multiobjective evolutionary algorithm for solving truck 

and trailer vehicle routing problems,” IEEE Congress on Evolutionary Computation, vol. 3, pp. 2134-2141, 2003.



 Comparison on the performance of metaheuristic  

algorithms against the branch and bound method 

(BB) on single objective BPP

 Results for each algorithm in 10 runs

 Proposed method (HMOPSO) capable of evolving 

more optimal solution as compared to BB in 5 out of 6 

classes of test instances



Number of optimal solution obtained



 Computational Efficiency

• stop after 1000 iterations or no improvement in last 5 generations

• MOPSO obtained inferior results compared to the other two



 Presentation of a mathematical model for MOBPP-2D

 MOBPP-2D solved by the proposed HMOPSO

 BLF chosen as the decoding heuristic

 HMOPSO is a robust search optimization algorithm

• Creation of variable length data structure

• Specialized mutation operator

 HMOPSO performs consistently well with the best average 

performance on the performance metric

 Outperforms MOPSO and MOEA in most of the test cases 

used in this paper




