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An example application

» An emergency room in a hospital measure
variables (e.g., blood pressure, age, etc)
admitted patients.

» A decision is needed: whether to put a ne
patient in an intensive-care unit.

» Due to the high cost of ICU, those patients
may survive less than a month are given hig
priority.

Problem: to predict high-risk patients and
discriminate them from low-risk patients.




Another application

» A credit card company receives thousands
applications for new cards. Each applicatio
contains information about an applicant,

» age
» Marital status

» annual salary

» outstanding debts
» credit rating

» etc.

» Problem: to decide whether an application sho
approved, or to classify applications into two
categories, approved and not approved.
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Machine learning and our

»f bikelhuman learning from past experiences
» A computer does not have “experiences”.

» A computer system learns from data, which
represent some “past experiences” of an
application domain.

» Our focus: learn a target function that can be
used to predict the values of a discrete class
attribute, e.g., approve or not-approved, and
high-risk or low risk.

» The task is commonly called: Supervised learni
classification, or inductive learning.




The data and the goal

» Data: A set of data records (also called examples, instances ord
described by

» k attributes: A, A,, ... A,.

» a class: Each example is labelled with a pre-defined class.

» Goal: To learn a classification model from the data that can be
predict the classes of new (future, or test) cases/instances.




Approved or not

Aog Has Job | Own House | Credit Rating Class
VO false talse faar ™0
Y OLng false talse cood ™0
VOIS true false a0 Yoes
VOIS true lrue faar Yoes
young false talse fair ™0
middle false talse fair ™0
middle false talse ~=_-ﬂr-d ™0
middle frue lrue a0 Yes
middle false true excellent Y es
middle false Lrue excellent Yes
ol false Lrue excellent Yes
old false lrue oo Y os
old true talse co0d Yoes
old true talse cxcellent Yes
old false talse falr ™0




An example: the learning task

» Learn a classification model from the data

» Use the model to classify future loan applic
into
» Yes (approved) and
» No (not approved)

» What is the class for following case/instance?

Age Has Job Own_house Credit-Rating
young  false false good

Class
?




Supervised vs. unsupervised

>L@@r}7ﬂiﬂl‘fgning: classification is seen as supervised learnin
examples.

» Supervision: The data (observations, measurements, etc.) are labe
defined classes. It is like that a “teacher” gives the classes (superv

» Test data are classified into these classes too.
» Unsupervised learning (clustering)
» Class labels of the data are unknown

» Given a set of data, the task is to establish the existence of classes o
in the data



Supervised learning process: tw

= Learning (training): Learn a model usi
training data

= Testing: Test the model using unseen t
to assess the model accuracy
Number of correctclassificaions
Accuracy =

3 C 3
= a,mital number of test cases

Training




What do we mean by
>lé"aerningb?

» a data se
» atask T, and

» a performance measure M,

a computer system is said to learn from D to perform the task T
learning the system’s performance on T improves as measured b

» In other words, the learned model helps the system to perform T bet
compared to no learning.




An example

» Data: Loan application data
» Task: Predict whether a loan should be approved or not.

» Performance measure: accuracy.

No learning: classify all future applications (test data) to the majori
(i.e., Yes):

Accuracy = 9/15 = 60%.
» We can do better than 60% with learning.




Fundamental assumption of
A iony distribution of training examples is identical to tl
t%ﬁlﬂam test examples (including future unseen examples
» In practice, this assumption is often violated to certain degree.

» Strong violations will clearly result in poor classification accurac

» To achieve good accuracy on the test data, training examples m
sufficiently representative of the test data.
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Introduction

» Decision tree learning is one of the most widely used techniq
classification.

» Its classification accuracy is competitive with other methods, an
» it is very efficient.

» The classification model is a tree, called decision tree.

» (4.5 by Ross Quinlan is perhaps the best known system. It can b
downloaded from the Web.
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Approved or not

Aog Has Job | Own Howose | Credit Rating Class
YVOLng false talse fanr ™
VO e false talse ool ™0
YO true false oo Yoes
y oung true Lrue Faar Yoes
YOI false talse fair ™0
middle false talse fair ™0
middle false false cood ™0
middle true Lrue good Yoes
middle false Lrue excellent Yoes
middle false Lrue excellent Yoes
old false Lrue excellent Yoes
old false true oo Yoes
old true false oo Yes
old true talse excellent Yoes
old false talse fair ™0
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A decision tree from the loan
= (DEcision nodes and leaf nodes (classe

Age?
Y oung mlcldlc old
Has Jﬂh \ | Own hnu'ae? |
true fal-..L true fﬂlsc farr  good  excellent
’ b1 ’ *, - | ™
Yes No Yes N No Yes Yes

22) (33 (33) (2 (U @2y (22




Use the decision tree

Age Has Jab Own_house Credit-Rating  Class
young  false false good 7
Age?
oung middle old
- |
I Has job? Cwn house? if_‘redit rating’
A A ey o

true  false frue  false farr  good excellent

’ bt ' A - | ™y
Yes NO Yes N NO Yes Yes

| (2/2)

(22) (33 (3/3) (22 (V1) (22




Is the decision tree unique?

= No. Here is a simpler tree.

= We want smaller tree and accurate tree
« Easy to understand and perform better.

= Finding the best#e
NP-hard. v [T ar ]

true  false

= All current tree buildirig
algorithms are heuristic
algorithms




From a decision tree to a set

=OA d6i3ion tree can

be converted to a
set of rules

= Each path from the
root to a leaf is a
rule.

Own_house = true — Class =Yes

Own_house = false, Has_job = true — Class = Yes [sup=5/15, conf=5/5]
Own_house = false, Has_job = false — Class = No [sup=4/15, conf=4/4]

| Cwn house? \

true  false
-""" ™
Yes | Has job? |
(6/6) AN
true  false
- LY
Yes MND
(5/5%) (44

\
sUp=6/15, conf=6/6]




Algorithm for decision tree learn

» Basic algorithm (a greedy divide-and-conquer algorithm)

» Assume attributes are categorical now (continuous attributes can be
handled too)

» Tree is constructed in a top-down recursive manner
» At start, all the training examples are at the root
» Examples are partitioned recursively based on selected attributes

» Attributes are selected on the basis of an impurity function (e.g.,
information gain)

» Conditions for stopping partitioning

» All examples for a given node belong to the same class

» There are no remaining attributes for further partitioning - majority
class is the leaf

» There are no examples left




Decision tree learning algorith

CAlgorithm decisionTree( /0, A, 1)

—_— e WD G =] LA dn L D =

17
15
19
20
21
22
23
24

if /0 contains only trammng examples of the same class ¢; = ( then
make a leat node labeled with class of
elseit 4 = &0 then
make 7 a leal node labeled with ¢ which 1s the most frequent class in /2
else D contams examples belongzmg to a mixture of classes. We select a single
Matmbute to partiion £ mto subsets so that cach subset 1s purer
g = impurity Eval-1{7);
for cach attribute A4; € [A4 A2 . Al do
= impuritvEval-2(.4;, 17)
cnd
Select A, = (4. As. o Ay} that gives the biggest impurity reduction,
computed using g —
ity — p, = threshold then VA, does not significantly reduce impurity g,
make /'a leaf node labeled with ¢, the most frequent class in /0
clse [ Agis able to reduce impurity gy
Make 1 a decision node on A,
Let the possible values of A, be vy, va, ..., vy Partition 2 into m
disjoint subsets /2, i3, ..., 1)y, based on the m values of A,
for cach Dy in {0y, e o D) do
if 7, = 7 then
create a branch (edge) node ¥ for vy as a child node of 77
decisionTree(/), A-{dg}. T}/ Ay is removed
end
end
end
end



Choose an attribute to
> P@ﬁg Ioigﬂinggit@sion tree - which attribute to choose

branch.

» The objective is to reduce impurity or uncertainty in data as mu
possible.

» Asubset of data is pure if all instances belong to the same class.

» The heuristic in C4.5 is to choose the attribute with the maximum
Information Gain or Gain Ratio based on information theory.
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Approved or not

Aog Has Job | Own Howose | Credit Rating Class
YVOLng false talse fanr ™
VO e false talse ool ™0
YO true false oo Yoes
y oung true Lrue Faar Yoes
YOI false talse fair ™0
middle false talse fair ™0
middle false false cood ™0
middle true Lrue good Yoes
middle false Lrue excellent Yoes
middle false Lrue excellent Yoes
old false Lrue excellent Yoes
old false true oo Yoes
old true false oo Yes
old true talse excellent Yoes
old false talse fair ™0
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Two possible roots, which is

better?

Young mddle  old true  false
- | - ’ \
MNo: 3 No: 2 No: | No: U Noo 6
Yos: 2 Yes: 3 Yes: 4 Yes 6 Yoes: 3
(A (B

= Fig. (B) seems to be better.




Information theory

» Information theory provides a mathemat
basis for measuring the information cont

» To understand the notion of information, t
about it as providing the answer to a quest
for example, whether a coin will come up
heads.

» If one already has a good guess about the answer,
then the actual answer is less informative.

» If one already knows that the coin is rigged so that
it will come with heads with probability 0.99, th
a message (advanced information) about the ac
outcome of a flip is worth less than it would b
a honest coin (50-50).




Information theory (cont ...)

» For a fair (honest) coin, you have no
information, and you are willing to pay
(say in terms of $) for advanced inform
- less you know, the more valuable the
information.

» Information theory uses this same intuiti
but instead of measuring the value for
information in dollars, it measures
information contents in bits.

» One bit of information is enough to answe
yes/no question about which one has no
idea, such as the flip of a fair coin




Information theory: Entropy me

» The entropy formula,

|

entropy(D) =—» Pr(c;)log, Pr(c;)
=1

|

> Pr(c;) =1

-1

» Pr(c;) is the probability of class ¢;in data set D

» We use entropy as a measure of impurity or
disorder of data set D. (Or, a measure of
information in a tree)




Entropy measure: let us get a

[ The data set D has 50% positive examples (Pripositive) = 0.5) and 50%,
negative examples (Prinegative) = 0.5).

entropy( D) =-0.5xlog, 0.5-0.5xlog, 0.5=1

2. The data set D has 20% positive examples (Pripositive) = 0.2) and 80%
negative examples (Prinegaiive) = 0.8).

entropy( D) =-02xlog, 0.2 -08xlog, 0.8§=0.722

3. The data set 2 has [0U% positive examples (Priposiiive) = 1) and no
negative examples, (Prinegative) = 0).

entropy( ) =—1xlog, I -Oxlog,0=0

= As the data become purer and purer, the entropy value
becomes smaller and smaller. This is useful to us!



Information gain

» Given a set of examples D, we first comput

entropy: -

eniropyv( D) = —Z Pr{ uf Vog, Pr( c,)
J=1

» If we make attribute A;, with v values, the root
the current tree, this will partition D into v subs
D,, D, ..., D, . The expected entropy if A; is use
the current root: .

entropy, (D) :Zl D, |><entropy(D-)
A | D | J

=1




Information gain (cont ...)

» Information gained by selecting attribute A,
branch or to partition the data is

gain(D, A)) =entropy(D) —entropy , (D)

» We choose the attribute with the highest gain
to branch/split the current tree.




An example D

entropy(D) = %x log, o +— )

%

xlog, 9. 0.971
15 15 15 :
7

eNtrOPYoyy pose (D) = %xentropy(o )+%xentropy(D )s

10

_ 5 0+ 2 %0018 .
15 15 2
=0.551 14

15

entropy,, (D) = %x entropy(D,) +%x entropy(D,) +%x entropy(D,)

= > x0.971+ > x0.971+ > x0.722
15 15 15

=0.888

= Own_house is the best
choice for the root.

Age | Has Job | Own_House | Credit Rating | Class
young false false fair No
Voung false false excellent No
young true false oood Yes
young true true good Yes
young false false fair No
middle false false fair
middle false false good

mddle

vain| ), Age) =
cain( 1), Own_house) =
eain({), Has_Job) =
eain(l), Credit_Rating) =

a7l -

0.971 -

32

(888 —
0.971 -

0.971] -

0.083
0.551 =

0.608 -

0.420
0.647=0.324

U363




We build the final tree

| Cwn house? |

true talse
4 >y
Yes | [las job? |
(6/6) N
true  false
- »
Yes MO
(5/5) (44

= We can use information gain ratio to evaluate the
Impurity as well (see the handout)




Handling continuous
>al‘tc’rh11'lt|9{§'tlenss attribute by splitting into two intervals (ca
node.

at eac
» How to find the best threshold to divide?

» Use information gain or gain ratio again
» Sort all the values of an continuous attribute in increasing order {v,,

» One possible threshold between two adjacent values v; and v;,,. Try a
thresholds and find the one that maximizes the gain (or gain ratio).




An example in a continuous

(A} A partition ol the data space (B The decision tree




Avoid overfitting in classificatio

» Overfitting: A tree may overfit the trai
» Good accuracy on training data but poor on

» Symptoms: tree too deep and too many bran
some may reflect anomalies due to noise or a

» Two approaches to avoid overfitting
» Pre-pruning: Halt tree construction early

» Difficult to decide because we do not know what may happen subsequently
growing the tree.

» Post-pruning: Remove branches or sub-trees fro
“fully grown” tree.

» This method is commonly used. C4.5 uses a statistical method to estimates tk
each node for pruning.

» A validation set may be used for pruning as well.




An example Likely to overfit the

X

I
W
()




Other issues in decision tree
learning

From tree to rules, and rule pruning

Handling of miss values

Handing skewed distributions

Handling attributes and classes with different costs.
Attribute construction

Etc.

vV v v v Vv Vv
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Evaluating classification metho

» Predictive accuracy

Number of correct classifications

Accuracy =
Total number of test cases

» Efficiency
» time to construct the model
» time to use the model

» Robustness: handling noise and missing values
» Scalability: efficiency in disk-resident databases
» Interpretability:

» understandable and insight provided by the model

» Compactness of the model: size of the tree, or t
number of rules.




Evaluation methods
» Holdout set: The available data set D is di
into two disjoint subsets,
» the training set D, , (for learning a model)
» the test set D,,, (for testing the model)

» Important: training set should not be used i
testing and the test set should not be used in
learning.

» Unseen test set provides a unbiased estimate of ac

» The test set is also called the holdout set. (th
examples in the original data set D are all labe
with classes.)

» This method is mainly used when the data se
large.




Evaluation methods (cont...)

» n-fold cross-validation: The available data
partitioned into n equal-size disjoint subse

» Use each subset as the test set and combin
n-1 subsets as the training set to learn a cla

» The procedure is run n times, which give n
accuracies.

» The final estimated accuracy of learning is th
average of the n accuracies.

» 10-fold and 5-fold cross-validations are commo
used.

» This method is used when the available data i
large.




Evaluation methods (cont...)

» Leave-one-out cross-validation: This method is used when th
very small.

» It is a special case of cross-validation

» Each fold of the cross validation has only a single test example
rest of the data is used in training.

» If the original data has m examples, this is m-fold cross-validatio




Evaluation methods (cont...)

» Validation set: the available data is dividec
three subsets,

» a training set,
» a validation set and
» a test set.

» A validation set is used frequently for estimat
parameters in learning algorithms.

» In such cases, the values that give the best
accuracy on the validation set are used as the
parameter values.

» Cross-validation can be used for parameter
estimating as well.




Classification measures

» Accuracy is only one measure (error = 1-ac
» Accuracy is not suitable in some applicati

» In text mining, we may only be interested in
documents of a particular topic, which are on
small portion of a big document collection.

» In classification involving skewed or highly
imbalanced data, e.g., network intrusion and
financial fraud detections, we are interested onl
in the minority class.

» High accuracy does not mean any intrusion is detected.
» E.g., 1% intrusion. Achieve 99% accuracy by doing no

» The class of interest is commonly called the
positive class, and the rest negative clas



Precision and recall measures

» Used in information retrieval and text clas
» We use a confusion matrix to introduce the

Classitied Positive Classihied Hegative

Actual Positive TP FM
Actual Negative FP ™™
where

FEthe number of correct classihications ol the positive examples (true
positive),

FNCthe number ol incorrect classilications ol positive examples (Talse
negative).

FPthe number ol icorrect classilications ol negative examples (Talse
positive ), and

N the number ol correct classilications ol negative examples (true
negative ).




Precision and recall measures (

Classified Positive Classified Negative
Actual Positive P FM
Actual Negative PP TN
TP TP
P = : = :
TP + FP TP + FN

= Precision p is the number of correctly classified
positive examples divided by the total number o
examples that are classified as positive.

Recall r is the number of correctly classified positi

examples divided by the total number of actual
positive examples in the test set.




An example

Classified Positive Classified Negative
Actual Positive | ity

Actual Nesirative {0 1000

» This confusion matrix gives
» precision p = 100% and
» recall r = 1%

because we only classified one positive example
correctly and no negative examples wrongly.

» Note: precision and recall only measure
classification on the positive class.




F,-value (also called F,-score)

» It is hard to compare two classifiers using two mea
score combines precision and recall into one meas

 2pr

by
ptr

Fi-score 15 the harmome mean ol precision and recall,

» The harmonic mean of two numbers tends to be closer t
the smaller of the two.

» For F,-value to be large, both p and r much be large




Receive operating characteristi

» It is commonly called the ROC curve.

» It is a plot of the true positive rate (TPR) against the
false positive rate (FPR).

» True positive rate:

IFPR = r
1P+ FN
» False positive rate:
FP
FPR =

IN + FP




Sensitivity and Specificity

» |n statistics, there are two other evaluation measures:
» Sensitivity: Same as TPR
» Specificity: Also called True Negative Rate (TNR)

IN
ITNR =
» Then we have m + F_P

FPR =1-specificity

51




Example ROC curves

1
0.9 -
0.8
0.7
0.6
0.5
0.4

Ture Positive Rate

Q.3
0.2

0.1 -

0 01 02 03 04 05 086 07 0B 09 1
False Postive Rate

Fig. 3.8. ROC curves for two classifiers (C; and C;) on the same data




Area under the curve (AUC)

» Which classifier is better, C; or C,?
» It depends on which region you talk about.

» Can we have one measure?

» Yes, we compute the area under the curve (AUC)

» If AUC for C, is greater than that of C;, it is said that C is
better than C;.

» If a classifier is perfect, its AUC value is 1

» If a classifier makes all random guesses, its AUC value is
0.5.




False Positive Rate

Drawing an ROC curve
Rank 1 2 5 &) 7 =
Actual class + + — — + — — +
TP 0 1 2 2 2 3 3 3 4
FP 0 0 iy 1 2 2 3 4 4
™ 6 6 6 5 4 4 3 2 2
FX 4 3 2 2 2 1 1 1 0
TPE 0 0.25 0.5 0.5 0.5 0.75 | 0.75 | 0.75 1
FPE 0 0 ] 017 [ 033 | 0.33 | 0.50 | 0.67 | 0.6
1
0.9 -
0.8 - e
& 0.7 - o
E 0.6 - L o
£ 05
E 0.4 '_..-" i
E 0.3 e
0.2 A -
01 4 .
0 : ; : . ; ; ;
0 0.1 .2 0.3 0.4 0.5 0.6 0.7 o8




Another evaluation method:
Scoring and ranking

» Scoring is related to classification.

» We are interested in a single class (positive class), e.g., buyers cla
marketing database.

» Instead of assigning each test instance a definite class, scoring assig
probability estimate (PE) to indicate the likelihood that the example
belongs to the positive class.




Ranking and lift analysis

» After each example is given a PE score,
rank all examples according to their PEs.

» We then divide the data into n (say 10) b
ift curve can be drawn according how ma
positive examples are in each bin. This is ¢
ift analysis.

» Classification systems can be used for scori
Need to produce a probability estimate.

» E.g., in decision trees, we can use the confidence v
at each leaf node as the score.




>

An example

We want to send promotion materials to potential customers
watch.

Each package cost $0.50 to send (material and postage).
If a watch is sold, we make S5 profit.

Suppose we have a large amount of past data for building a
predictive/classification model. We also have a large list of pote
customers.

How many packages should we send and who should we send to?



An example

» Assume that the test set has 10000 instances. Out of this, 500
cases.

» After the classifier is built, we score each test instance. We th
test set, and divide the ranked test set into 10 bins.

» Each bin has 1000 test instances.
Bin 1 has 210 actual positive instances
Bin 2 has 120 actual positive instances

Bin 3 has 60 actual positive instances

vV v v v Y

Bin 10 has 5 actual positive instances




Lift curve
Bin 1

210 120 60 40 22 18 12 I
42% 24% 12% 8%| 4.40%]| 3.60%]| 2.40%]| 1.40%
42% 66% 78% 86%]| 90.40% 94%] 96.40%| 97.80%

Percent of total positive cases

20

30

40

50

60 70

Percent of testing cases

80

90 100

—a— |ift
—&— random




Road Map

Basic concepts

Decision tree induction

Evaluation of classifiers

Rule induction

Classification using association rules
Naive Bayesian classification

Naive Bayes for text classification
Support vector machines
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Introduction

We showed that a decision tree can be converted to a set of r

Can we find if-then rules directly from data for classification?
Yes.

vV v VvV Y

Rule induction systems find a sequence of rules (also called a d
list) for classification.

v

The commonly used strategy is sequential covering.




Sequential covering

» Learn one rule at a time, sequentially.

» After a rule is learned, the training examples covered by the rulée
removed.

» Only the remaining data are used to find subsequent rules.
» The process repeats until some stopping criteria are met.

Note: a rule covers an example if the example satisfies the conditions
rule.

» We introduce two specific algorithms.



Algorithm 1: ordered rules
Algorithm sequential-covering- 1{ )
| Rulelist « 0
2 Rule « leam-one-rule-100);
3 while Rule 1s not NULL AND D = &2 do
B! Rulelist < msert Rule at the end ol RulelList.
5 Remove from D the examples covered by Rule,
6
7
8

Hule « learn-one-rule-1(0)
endwhile
msert a delault class ¢ at the end ol RudelLisi, where ¢ 15 the majority class
i L
9 return Rulelist

= The final classifier:
<ry, Iy, ..., I, default-class>




Algorithm 2: ordered classes
Alzorithm sequential-covering-2(/72, ()
| Ruwlelist «+ & /[ empty rule set at the beginning
2 foreachclass ¢ =0 "do
3 prepare data (Pos, Neg), where Pos contamns all the examples of class ¢
from £, and Neg contams the rest of the examples in [
while Pos = L0 do

4
5 Riude «— learn-one-rule-2{ Pos, Neg, o)
5 if Fude 1s MULL then
7
bt

exit-while-loop
else fuwlelist «— nsert Rule at the end of fuwfel s
G Remove examples covered by Rude from (Pas, Neg)
10 endif
I endwhile
12 endfor

13 return Sufel s

= Rules of the same class are together.

04




Algorithm 1 vs. Algorithm 2

» Differences:

» Algorithm 2: Rules of the same class are found together. The classes
ordered. Normally, minority class rules are found first.

» Algorithm 1: In each iteration, a rule of any class may be found. Ru
ordered according to the sequence they are found.

» Use of rules: the same.

» For a test instance, we try each rule sequentially. The first rule that
instance classifies it.

» If no rule covers it, default class is used, which is the majority class i
data.




Learn-one-rule-1 function

» Let us consider only categorical attributes

» Let attributeValuePairs contains all possible attribute-value pairs
in the data.

» Iteration 1: Each attribute-value is evaluated as the condition of
l.e., we compare all such rules A; = a; — ¢;and keep the best one

» Evaluation: e.g., entropy

» Also store the k best rules for beam search (to search more space). Ca
candidates.




Learn-one-rule-1 function

iter ﬁ ach ( )-condition rule in the new candidate
ﬁé §achmg each attribute-value pair in attributeVal
addltlonal condition to form candidate rules.

» These new candidate rules are then evaluated in the same way a
condition rules.

» Update the best rule
» Update the k-best rules

» The process repeats unless stopping criteria are met.




Learn-one-rule-1 algorithm

Function learn-one-rule-1{72),

1 Hesrd londg «— & /O rule wath no condition.

2 candidateCondSet «— {bestCond}

3 artribure ValuwePairs <— the set of all attribute-value pairs in /2 of the form
(A; apr vy, where A; 1s an attribute and v 15 a value or an interval;

4 while candidare ondSer = &5 do

5 rew( andidare ondSer «— &

i for each candidate cornd in candidare ondSer do

7 for cach attribute-value pair a in arribure ValvePairs do

bt rew{ and «— condd 'L Yl

< newCandidareC ondSer «— newCandidareC ondSer ) {rewCond

10 cndftor

11 cndfor

12 remove duplicates and inconsistencies, e.g._ J4;, = vy, A = vals

13 for cach candidate rrew( ornd 1n nevwCandidareC ondSer do

1 if evaluation{ mew and. 1) = evaluation{ Sesi and, 17 then

15 Resr ond «— nevwCond,

16 cndit

17 cndfor

18 candidateC ondSet «— the & best members of mnew andidareC ondSer

according to the results of the evaluation function:
endwhile

if evaluationd Hesed ‘ond, 10y — evaluation 3 [0y = dheesfiodd then

return the rule: “Hesr 'ond — <7 where 1s ¢ the majonty class of the
data covered bv FHesi Cond;
else returm ™NUTLL

endif 08




Learn-one-rule-2 function

» Split the data:

» Pos -> GrowPos and PrunePos

» Neg -> GrowNeg and PruneNeg

» Grow sets are used to find a rule (BestRule), and the Prune sets a
prune the rule.

» GrowRule works similarly as in learn-one-rule-1, but the class is f
case. Recall the second algorithm finds all rules of a class first (Pa
then moves to the next class.




Learn-one-rule-2 algorithm

Function leamn-one-rule-2( Pas, Neg, class)
split { Pos, Neg)into (GrowPos, GrowNeg) and (PruncPos, PraneNep)
BestRule « GrowRule( GrowPos, GrowNeg, elass) [ orow a new rule
BestRule « PruneRule( BesiRule, PrunePos, PruneNeg) /) prune the rule
if the error rate of BesiRule on (PrunelPos, PraneNeg) exceeds 50% then

return NULL
endif
return Hesifiule

=] O Lh e L e e




Rule evaluation in learn-one-rul

» Let the current partially developed rule be:
R: av,, .., av, —> class
» where each av; is a condition (an attribute-value pair)
» By adding a new condition av,,,, we obtain the r
R+: av,, .., av,, av,,,— class.

» The evaluation function for R+ is the following
information gain criterion (which is different from
gain function used in decision tree learning).

gain(R,R+)=p1><[Iog2 P —log, Do )
P14+ N1 Po + No

» Rule with the best gain is kept for further exte




Rule pruning in learn-one-rule-2

» Consider deleting every subset of conditions
the BestRule, and choose the deletion that
maximizes the function:

v(BestRule, PrunePos, PruneNeg) =

where p (n) is the number of examples in Prune
(PruneNeg) covered by the current rule (after a
deletion).




Discussions

» Accuracy: similar to decision tree

» Efficiency: Run much slower than decision t
induction because

» To generate each rule, all possible rules are tried
data (not really all, but still a lot).

» When the data is large and/or the number of attri
value pairs are large. It may run very slowly.

» Rule interpretability: Can be a problem becau
each rule is found after data covered by previo
rules are removed. Thus, each rule may not b
treated as independent of other rules.
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Three approaches

» Three main approaches of using association rules for
classification.

» Using class association rules to build classifiers
» Using class association rules as attributes/features

» Using normal association rules for classification




Using Class Association Rules

» Classification: mine a small set of rules existing in the data to
classifier or predictor.

» It has a target attribute: Class attribute
» Association rules: have no fixed target, but we can fix a target.

» Class association rules (CAR): has a target class attribute. E.g.,

Own_house = true — Class =Yes [sup=6/15, con

» CARs can obviously be used for classification.




Decision tree vs. CARs

» The decision tree below generates the followin
Own_house = true — Class =Yes [sup=6/15, C
Own_house = false, Has_job = true — Class=Yes [sup=5/15, C
Own_house = false, Has_job = false — Class=No [sup=4/15, ¢

‘ Own house? \

= But there are many other e false
rules that are not found by ~ Yes | Has job? |
the decision tree & I
¢ false
” b
Yes No

(5/5) (44}




There are many more rules

Age = young, Has_job = true — Class=Yes [sup=2/15, conf=2/2]
Age = young, Has_job = false — Class=No [sup=3/15, conf=3/3]
Credit_Rating = farr — Class=No [sup=4/15, conf=4/4]
Credit_Rating = good — Class=Yes [sup=5/15, conf=5/6]

and many more, 1l we use mimsup = 2/15 = 13.3% and mmconl = 80%

1D Age | Has Job | Own_House | Credit Rating | Class

.. . 1 young false false fair No

» CAR m]n]ng finds all of 2 ir*mtné false false excellent No
them. 3 young true false zood Yes

» In many cases, rules ¢ fooune | e e good e

not in the decision tree | [ome1—ts R four No

5 middle false false fai No

(Or a rule l]St). may 7 middle talse false zood No
perform ClaSS]ﬁcatlon 5 middle true true ;'mvd Yes
better. 9 middle false true excellent Yes

10 middle false true excellent Yes

Suc,h rUleS may also, be 11 old false true excellent Yes
aCtlonable n praCtlce 12 old false true o0 Yes

13 old true false zood Yes

14 old true false excellent Yos

15 old false false fair




Decision tree vs. CARs (cont

hA{s}ociation mining require discrete attributes. Decision tree |
both discrete and continuous attributes.

» CAR mining requires continuous attributes discretized. There are s
algorithms.

» Decision tree is not constrained by minsup or minconf, and thus
find rules with very low support. Of course, such rules may be pr
to the possible overfitting.




Considerations in CAR mining

» Multiple minimum class supports

» Deal with imbalanced class distribution, e.g., some class is rare, 98’
negative and 2% positive.

» We can set the minsup(positive) = 0.2% and minsup(negative) = 2%.

» If we are not interested in classification of negative class, we may not
to generate rules for negative class. We can set minsup(negative)=1
more.

» Rule pruning may be performed.



Building classifiers

» There are many ways to build classifiers using CARs. Several e
available.

» Strongest rules: After CARs are mined, do nothing.

» For each test case, we simply choose the most confident rule that
case to classify it. Microsoft SQL Server has a similar method.

» Or, using a combination of rules.
» Selecting a subset of Rules
» used in the CBA system.

» similar to sequential covering.




CBA: Rules are sorted first

Definition: Given two rules, r; and r;, r; > r; (also called ri preced
has a higher precedence than r)) if

» the confidence of rj is greater than that of r;, or

» their confidences are the same, but the support of rj is greater tha
or

» both the confidences and supports of r and rj are the same, but r i
generated earlier than rj.

A CBA classifier L is of the form:
L=<r,r,, .., r, default-class>




Classifier building using CARs

Algorithm CBA(SN, [7)
N RIS ) [ sorting 15 done according to the precedence -
Rulelist = &) U the rale list classitier
for cach rule » £ 5 in sequence do

if /= &0 AND r classifies at least one example in £ correctly then
delete from [0 all tramming examples coverad by

add » at the end of fulelisr
enil

end
add the majoriy ¢lass as the delault class at the end ol RuleList

WOOSE =] O LA e L D e

» This algorithm is very inefficient

» CBA has a very efficient algorithm (quite sophisticated
that scans the data at most two times.




Using rules as features

» Most classification methods do not fully
explore multi-attribute correlations, e.g.,
naive Bayesian, decision trees, rules
induction, etc.

» This method creates extra attributes to
augment the original data by

» Using the conditional parts of rules
» Each rule forms an new attribute

» If a data record satisfies the condition of a
rule, the attribute value is 1, and 0 otherwise

» One can also use only rules as attributes
» Throw away the original data




Using normal association

rules for classification
» A widely used approach

» Main approach: strongest rules

» Main application

» Recommendation systems in e-commerce Web site (e.g
amazon.com).

» Each rule consequent is the recommended item.
» Major advantage: any item can be predicted.
» Main issue:

» Coverage: rare item rules are not found using classic algo.

» Multiple min supports and support difference constraint
great deal.
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Bayesian classification

» Probabilistic view: Supervised learning can na
studied from a probabilistic point of view.

» Let A, through A, be attributes with discrete va
The class is C.

» Given a test example d with observed attribute \
a, through a,.

» Classification is basically to compute the following
posteriori probability. The prediction is the class
that

PriC =c; | dy =ap..d =ay)

1S maximal



Apply Bayes’ Rule
Pr(C=c;|A =ay,....Ay=2ay)
Pr(A =ay,.... Ay =a,|C=c;)Pr(C=c;)
Pr(A =ay,.... Ay = ap)
- Pr(A =a,....Ay=2a,|C=c;)Pr(C=c)

~ c

> Pr(A =ay,....Ay=a,|C=c,)Pr(C=c,)

= Pr(C=c) Is the class prior probability: eas
estimate from the training data.




Computing probabilities

» The denominator P(A,=a,,...,A.=a,) is irrelevant for decision ma
is the same for every class.

» We only need P(A=a,,...,A.=a, | C=c;), which can be written as
PI’(A1 =a1 | A2=a2, cee ,Ak=ak, C=CJ)* PI’(A2=62, oo ,Ak=ak | C C

» Recursively, the second factor above can be written in the same w
on.

» Now an assumption is needed.




Conditional independence
> Q§§Mmgg;leqmditionally independent given the class C =

» Formally, we assume,
PI’(A1=CI1 | A2=az, ceoy A|A|=G|A|, C=CJ) = Pr(A1=a1 | ()

and so on for A, through A ,,. l.e.,

Al

Pr(A =a,,....,Ay=a,|C=c) :1__[Pr(Ai =a |C




Final naive Bayesian classifier

PriC=c¢; [A =a,...Ay=ax)
A

Pr(C :cj)l__[Pr(Ai =a,|C=c;)

g Al

ZPF(C :Cr)HPr(Ai =g, |C=c,)

» We are done!
» How do we estimate P(A; = g;| C=c;)? Easy!.




Classify a test instance

» |If we only need a decision on the most probable class for the
we only need the numerator as its denominator is the same fo

» Thus, given a test example, we compute the following to decid
probable class for the test instance

Al

c=argmaxPr(c;)] |Pr(A =a;|C =c;)
' 1=1

C




An example

= Compute all probabilities

required for classification

=1 =) =3 =] =Y = =3 =0 =1 =R

oo oo 1o O e o e o | T2
e el el Bl il il Bl Bl Bl e B

PriC =1)=1/2, Pr{C=1f)= 1,2

PriA=m | C=t1=2/5 PriA—g C=t)=2/5
Pr(A=m | C=f) = 1/5 PriA=g | C=f)=2/5
Pr(B=h | C=t) = 1/5 Pr(B=s | C=t) = 2/5
PriB=h | C=f) = 2/5 PriB=s | C=f)= 1/5

MNow we have a test example:

A=m HB=q =7

Prid=h C=t)= 13
Pr{A=h| C=n)=2/5
PriB—q | C—1) = 2/5
PriB—q | C=f)=2/5




An Example (cont ...)

» For C=t, we have

- 1 2 2
Pr(C =t) Pr(Aj:aj|C:t):_x_x_:_
> ForclassC=f,J: have 2 5 5 25

1 1 1

— X

2
» PG R A= apl G 1) =~

=1




Additional issues

» Numeric attributes: Naive Bayesian learning assumes that all
are categorical. Numeric attributes need to be discretized.

» Zero counts: An particular attribute value never occurs togethe
class in the training set. We need smoothing.

» Missing values: Ignhored

n; + A

Pr(A =a |[C=c.)=
(A=a| i) T




On naive Bayesian classifier

» Advantages:
» Easy to implement
» Very efficient

» Good results obtained in many applications

» Disadvantages

» Assumption: class conditional independence, therefore loss of accursa
when the assumption is seriously violated (those highly correlated da
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Text

»Chae 1o therapid growth gfonliad documen
organizations and on the Web, automated
document classification has become an impa
problem.

» Techniques discussed previously can be applie
text classification, but they are not as effect
the next three methods.

» We first study a naive Bayesian method specifi
formulated for texts, which makes use of some
specific features.

» However, the ideas are similar to the precedi
method.




Probabilistic framework

»  Generative model: Each document is generated by a parame
distribution governed by a set of hidden parameters.

»  The generative model makes two assumptions

»  The data (or the text documents) are generated by a mixture mode

> There is one-to-one correspondence between mixture components a
document classes.




Mixture model

» A mixture model models the data with a number of statistical
distributions.

» Intuitively, each distribution corresponds to a data cluster and the
of the distribution provide a description of the corresponding clust

» Each distribution in a mixture model is also called a mixture co

» The distribution/component can be of any kind




An example

» The figure shows a plot of the probability density function of
data set (with two classes) generated by

» a mixture of two Gaussian distributions,

» one per class, whose parameters (denoted by ¢;) are the mean (z;) a
standard deviation (g)), i.e., 6 = (y;, o).

class 1 class 2




Mixture model (cont ...)

» Let the number of mixture components (or distributions) in a
model be K.

» Let the jth distribution have the parameters 6.

» Let ® be the set of parameters of all components, ® = {¢,, ¢,, ..
0,, ..., 6}, where g, is the mixture weight (or mixture probabilit
mixture component j and ¢, is the parameters of component j.

» How does the model generate documents?




Document generation

\

» Due to one-to-one correspondence, each clc
corresponds to a mixture component. The
weights are class prior probabilities, i.e., ¢
Pr(c;|®).

» The mixture model generates each document a

» first selecting a mixture component (or class) acco
to class prior probabilities (i.e., mixture weights), ¢
Pr(c;|0).

» then having this selected mixture component (c;)
generate a ddeument d; according to its parameters, W

Rfigcilp@pr-PXdPr(09)| @ YRy ise®)Pr(d; | ¢; ¢

=1




Model text documents

» The naive Bayesian classification treats each document as a
words”. The generative model makes the following further ass

» Words of a document are generated independently of context give
label. The familiar naive Bayes assumption used before.

» The probability of a word is independent of its position in the docu
document length is chosen independent of its class.




Multinomial distribution

» With the assumptions, each document can be regarded as gen
multinomial distribution.

» In other words, each document is drawn from a multinomial dis
words with as many independent trials as the length of the doc

» The words are from a given vocabulary V = {w;, w,, ..., w,y].




Use probability function of multin
distribution

Pr(Wt ‘ Ci.®

Pr(di| c;;®) =Pr(| d: )| d |'H

tl.

where N,; is the number of times that wor
occurs in document d; and

V| Vi

> Nie=|di | D Pr(w|c;®) =1
t=1 t=1



Parameter estimation
» The parameters are estimated based on em

ts.
R Z'D' N, Pr(c, | d;)
Pr(w, |[c;;0) = 5 .
Z Z Nsi Pr(Cj |d|)
» In order to handle 0 counts for infrequent occu
words that do not appear in the training set, bu

may appear in the test set, we need to smoot
probability. Lidstone smoothing, 0 < 4 <1

mZ'D' N, Pr(c, |d,)
AV I+ SN Pr(e; | d

Pr(w, |c;;0) =




Parameter estimation (cont

>,,Cl).ss prior probabilities, which are mixture weights ¢;, can be
estimated using training data

D]

Pr(ci|®) = Zi=1Pr(CJ | di)

D]




Classification

» Given a test document d;, from Eq. (23) (2
.6 - Prel©)Prd | c:6)
Pr(di | ®)
~ Pr(c] (3))1_[':":'1Pr(wdi,k c; ©)
S Prc | O[T Pr(w, , | c.; @)\

where wy 15 the word in position £ ol document 4 11 the [inal classilier 15

o classily each document o a single class. then the class with the high-
est postenior probability 15 selected:

AT M Fr{c;-|a:ﬂ;t-':_1] (30)

S




Discussions

» Most assumptions made by naive Bayesian learning are violate
degree in practice.

» Despite such violations, researchers have shown that naive Bay
learning produces very accurate models.

» The main problem is the mixture model assumption. When this assu
seriously violated, the classification performance can be poor.

» Naive Bayesian learning is extremely efficient.
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Introduction

» Support vector machines were invented by V.
and his co-workers in 1970s in Russia and beca
known to the West in 1992.

» SVMs are linear classifiers that find a hyperplane t
separate two class of data, positive and negative

» Kernel functions are used for nonlinear separatio

» SVM not only has a rigorous theoretical foundatio
also performs classification more accurately than
other methods in applications, especially for high
dimensional data.

» It is perhaps the best classifier for text classificat




Basic concepts

» Let the set of training examples D be
{(X13 y1): (Xzy y2), sy (Xr) yr)})

where X. = (X4, X,, ..., X,) iS an input vector °
real-valued space X < R™ and v; is its class lab
(output value), v; € {1, -1}.

1: positive class and -1: negative class.

» SVM finds a linear function of the form (w: we
vector)

f(xX)=W-x)+b
yo— 1 if{w-x;)+b>0

=1 1f{w-x;)+b<0

113




The hyperplane

» The hyperplane that separates positive an
training data is

W-X)+b=0
» It is also called the decision boundary (surfac
» So many possible hyperplanes, which one to c




Maximal margin hyperplane

» SVM looks for the separating hyperplane with the |
margin.

» Machine learning theory says this hyperplane minimi
error bound

MrEin

Hywexp o p=1
Holwex)  bh=-1
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Linear SVM: separable case

» Assume the data are linearly separable.

» Consider a positive data point (x*, 1) and a
negative (x-, -1) that are closest to the hyp

<w - x>+ b =0.

» We define two parallel hyperplanes, H, and H_,
pass through x* and x respectively. H, and H. a
also parallel to <w - x> + b = 0.

He (w-x"+bh—1
He (wexy+h——1

such that wexg b=l 1y = |
wexs b= iy = 1.



Compute the margin

» Now let us compute the distance between
margin hyperplanes H, and H.. Their distan
margin (d, + d_in the figure).

» Recall from vector space in algebra that the
(perpendicular) distance from a point x; to t
hyperplane (w - X) + b = 0 is:

[ {(w-X;)+D]

]

where | |[w| | is the norm of w,

Wl=A/<W-W> =W +W 5+, +W.7°
| w | W, A




Compute the margin (cont ...)

» Let us compute d,.
» Instead of computing the distance from x*
separating hyperplane (w - x) + b = 0, we pick
any point x, on (w - x) + b = 0 and compute t
distance from x, to (w - x*) + b = 1 by applyi
distance Eq. (36) and noticing (w - x,) + b = 0,

- Kwexg)+b-1] 1
fwil fwil

_|_

margin=d, +d_



A optimization problem!

Definition (Linear SVM: separable case): Given
linearly separable training examples,

D = {(X1, y1), (XZ) yz)) T13) (Xr) yr)}

Learning is to solve the following constrained
minimization problem,

Minimize : (W-W)

Subjectto: y,({w-x;)+b)>1 1=1,2,...,r

yi (w-Xx;) +b =1surmmarizes
W-Xp)+b<-1 fory,=-1.




Solve the constrained

’nsﬁi’ﬁ“iﬁ‘ﬁ%ﬁfiﬁ?’it:‘“

Lo :£<W'W>_Zai[yi Kw-X;)+b)-1]

where o& 0 are the Lagrange multipliers.

» Optimization theory says that an optimal solution to (41) must sa
certain conditions, called Kuhn-Tucker conditions, which are ne
(but not sufficient)

» Kuhn-Tucker conditions play a central role in constrained optimiza



Kuhn-Tucker conditions

L, ,
=W, - e, X, =0, j=1.2....m
ij i EJ"! i - s
ol p -
— TEE =E|
=h ‘§=1:.}f i

viiw-x 0+ b)—1=20, i=1.2....r
e, =00 i=12. . r

v iiw-xX e h)-1y=0 i=1.2.__r

» Eq. (50) is the original set of constraints.
» The complementarity condition (52) shows that only those
data points on the margin hyperplanes (i.e., H, and H.)
have «; > 0 since for them y,((w - x;) + b) - 1 =0.
» These points are called the support vectors, All the o
parameters «; = 0.




Solve the problem

» In general, Kuhn-Tucker conditions are nec
for an optimal solution, but not sufficient.

» However, for our minimization problem with
convex objective function and linear constrai
the Kuhn-Tucker conditions are both necessar
sufficient for an optimal solution.

» Solving the optimization problem is still a diffic
task due to the inequality constraints.

» However, the Lagrangian treatment of the conve
optimization problem leads to an alternative d
formulation of the problem, which is easier to
solve than the original problem (called the p




Dual formulation

» From primal to a dual: Setting to zero the partial derivatives
Lagrangian (41) with respect to the primal variables (i.e., w a
substituting the resulting relations back into the Lagrangian.

» l.e., substitute (48) and (49), into the original Lagrangian (41) to el
primal variables




Dual ootlmlzatlon Drolem
Maximize: LB—ZH ——Zl VO X X ),

i=l =i j=1

| > v =0
Subjectto: o5
a, =0, i=L2 . r

= This dual formulation is called the Wolfe dual.

= For the convex objective function and linear constraint
the primal, it has the property that the maximum of L
occurs at the same values of w, b and «;, as the mini
of L, (the primal).

= Solving (56) requires numerical techniques and cle

strategies, which are beyond our scope.




The final decision boundary
» After solving (56), we obtain the values for «;,

are used to compute the weight vector w and
b using Equations (48) and (52) respectively.

» The decision boundary
(W-X)+b=>"ya;(X; - x)+b=0
lesv
» Testing: Use (57). Given a test instance z,
sign((w-z) +b) = sign[z oy (X, -Z)+ bj

» If (58) returns 1, then the test instance z is classifi
positive; otherwise, it is classified as negative.




Linear SVM: Non-separable case

» Linear separable case is the ideal situation

» Real-life data may have noise or errors.

» Class label incorrect or randomness in the applic
domain.

» Recall in the separable case, the problem w

Minimize : VW)

Subjectto: y,({w-x;)+b)>1, 1=1,2,...,r

» With noisy data, the constraints may not be
satisfied. Then, no solution!




Relax the constraints

» To allow errors in data, we relax the margin constraints by int
slack variables, & (> 0) as follows:

W-Xp)+b>1-¢&  fory, =1
W-x)y+b<-1+¢& fory,=-1.
» The new constraints:
Subject to: yi((w-x)y+b)>21-&,i=1, .., 1,
&E>0, i=1,2,..,r




Geometric interpretation

» Two error data points x, and x,, (circled) in
regions




Penalize errors in objective
> f'@n?@tti@ﬂalize the errors in the objective function.

» Anatural way of doing it is to assign an extra cost for errors to
objective function to

» k=11is commonly used, which has the advantage that neither & n
Lagrangian multipliers appear in the dual formulation.

Minimize : YW (> e
=1




New optimization problem
L (Wew) r
Minimize : 5 +CZ.§i

Subjectto: y.({w-X:)+Db)>1-&, 1=1,2,.
& >0, 1=1,2,...,r

» This formulation is called the soft-margin SVM. The primal Lagrang

Lwherg' zwu,ﬁ,g qr@f'fgj\?&“['vl t'ﬁ'/’s X, >-I- b) -1+ 5.] } <




Kuhn-Tucker conditions

ol a }

=W, — X, =0 j=12....m
E'H?JI. i E.}"i | R | A 7 =
o =_Zl’rﬂf =0
b i=1
clLp =C =, —u, =0, 1=12,...r
dg

yviiiw-x ) +b) -1+ & =20, i=1.2,...r
S=0, i=1.2 . .r

c, =0, i=1.2, ..r

=0 i=102 L
a(yw-x; 0+ b)) =1+ 5)=0, i=1.2,...r
e, =0, i=1,2....r




From primal to dual

» As the linear separable case, we transform the primal to a dua
to zero the partial derivatives of the Lagrangian (62) with respe
primal variables (i.e., w, b and &), and substituting the resulting
relations back into the Lagrangian.

» le.., we substitute Equations (63), (64) and (65) into the primal
(62).

» From Equation (65), C — o; — 1; = 0, we can deduce that ¢; < C bec
0.




Dual

» The dual of (61) is

L - I <
Maximize: L, (a) = Zf:e'I 3 Z}',yﬁrﬁj{x‘ X
= <1 )=

r

Z e, =0

Subject to- 5

O=w =C, i=12, . r

» Interestingly, & and its Lagrange multipliers u;
not in the dual. The objective function is identic
to that for the separable case.

» The only difference is the constraint «; < C.




Find primal variable values

» The dual problem (72) can be solved nume

» The resulting ¢; values are then used to co
and b. w is computed using Equation (63) and
computed using the Kuhn-Tucker compleme
conditions (70) and (71).

» Since no values for &, we need to get around

» From Equations (65), (70) and (71), we observe tha
0!,-< Cthen bOth §i=0andyi<W‘Xi>+b_ 1 +§i=0'
we can use any training data point for which 0 < ¢; -

Equlationr(69) (with & = 0) to compute b.
b=—"-2 viei(X;-x;)=0.

Yi iz




(65), (70) and (71) in fact tell u

o= = oyliwexg th) =1 and S0
D<g=C = wliwex T hy=1land 510
= = oyliwexg th) =1 and §=0

» (74) shows a very important property of SVM.

x;) + b) = 1, which are support vectors in the separable
case), inside the margin (i.e., o; = C and y;({(w - X;) +
or errors are non-zero.

» Without this sparsity property, SVM would not be
for large data sets.




The final decision boundary

» The final decision boundary is (we note tha
a;’s are 0)

(W-X)+b = Zy,a(x Xy+b=0

» The decision rule for classification (testing) is
same as the separable case, i.e.,

sign({w - X) + b).

» Finally, we also need to determine the paramet
in the objective function. It is normally chosen
through the use of a validation set or cross-
validation.
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How to deal with nonlinear sep

» The SVM formulations require linear separ
» Real-life data sets may need nonlinear sep

» To deal with nonlinear separation, the same
formulation and techniques as for the linear
are still used.

» We only transform the input data into anothe
space (usually of a much higher dimension) so

» a linear decision boundary can separate positive an
negative examples in the transformed space,

» The transformed space is called the feature sp
The original data space is called the input sp




Space transformation

» The basic idea is to map the data in the input space X to a fea
via a nonlinear mapping ¢,

» After the mapping¢tl:|e)Qring;a|Iraining data set {(x4, v¢), (X5, V;
v.)} becomes:

(00x), v, (WOOFR PN, vo)3




Geometric interpretation

[nput space .\’

Feature space

= In this example, the transformed space Is
also 2-D. But usually, the number of
dimensions in the feature space is much
higher than that in the input space

9




Ohtimivqfiqn nrahlam 1n
With the transformation, the optimization problem in (61) becomes

( Minimize ‘i“’;:‘ +CY & (78)
i=l

Subjectto: viiiw-gix, p+hj=1-&. i=1.2. _r

E 20, i=1,2,...r

The dual is
. : |
Maximize: Ly =3 o == > v et () gix, ) (79)
i=1 e
Subject to: ,.Zﬂ:y’ :
OD=e, =C. i=12....r

The final decision rule for classification (testing) is

D v (x,) ¢lx))+ b
i=l




An example space
>tﬁ&fds§ﬁ® rlmaiienl-dimensional, and we choose the

transformation (mapping) from 2-D to 3-D:

» The training example ((2, 3),e-21) in trée input space is transforme
following yn the/feytura s -
(RXT)HS KT, X, V22X X,)
((4) 97 85); '1)




Problem with explicit

>tﬁ95£@‘rﬂ?§ll£irgﬂem with this explicit date

transformation and then applying the linear:
that it may suffer from the curse of dimensic

» The number of dimensions in the feature space
be huge with some useful transformations eve
with reasonable numbers of attributes in the
space.

» This makes it computationally infeasible to ha
» Fortunately, explicit transformation is not needg




Kernel functions

» We notice that in the dual formulation both

» the construction of the optimal hyperplane (79) in F a
» the evaluation of the corresponding decision function (8

only require dot products {#(x) - ¢#(z)) and never the mapp
vector ¢(x) in its explicit form. This is a crucial point.

» Thus, if we have a way to compute the dot produ
{p(X) - ¢(Z)) using the input vectors x and z directl

» no need to know the feature vector ¢(x) or even ¢ itself.

» In SVM, this is done through the use of kernel func
denoted by K,

K(X, z) = (d(X) - #(2))




An example kernel function

» Polynomial kernel
K(x, z) = (x - z)¢

» Let us compute the kernel with degree d =
dimensional space: x = (x;, X;) and z = (z,,

(X-2)? = (X2, +X,2,)°
= X,2,° + 22X, 2, X, 2, + X, 25"
= (4% % 2x%.) - (2%, 2.2 22,2,
=((x)-¢(2)),

» This shows that the kernel (x - z)? is a dot pr
in a transformed feature space




>
>
>

>

Kernel trick

The derivation in (84) is only for illustration purposes.
We do not need to find the mapping function.

We can simply apply the kernel function directly by

» replace all the dot products (#(x) - #(z)) in (79) and (80) with the k
function K(x, z) (e.g., the polynomial kernel (x - z)d in (83)).

This strategy is called the kernel trick.



Is it a kernel function?

» The question is: how do we know whether a function is a kerne
performing the derivation such as that in (84)? l.e,

» How do we know that a kernel function is indeed a dot product in s
space?

» This question is answered by a theorem called the Mercer’s theo
which we will not discuss here.




Commonly used kernels

» It is clear that the idea of kernel generaliz
dot product in the input space. This dot pr
also a kernel with the feature map being th

iAdantit\

Kix.z)=(x-z)
Commonly vsed kernels include

Polynomial.  K(x.z)=((x-z)+ )"

Gaussian RBF: K(x.z)= ol o
Sigmoidal: Kix.z)=tanh(k{x-z)- &)

where e R.de Na=0,and k. 6 R.




Some other issues in SYM

» SVM works only in a real-valued space. Fo
categorical attribute, we need to convert its
categorical values to numeric values.

» SVM does only two-class classification. For
class problems, some strategies can be applied
e.g., one-against-rest, and error-correcting o
coding.

» The hyperplane produced by SVM is hard to
understand by human users. The matter is mac
worse by kernels. Thus, SVM is commonly used
applications that do not required human
understanding.




Road Map

» Basic concepts

» Decision tree induction

» Evaluation of classifiers

» Rule induction

» Classification using association rules
» Naive Bayesian classification

» Nalve Bayes for text classification

» Support vector machines

» K-nearest neighbor

» Ensemble methods: Bagging and Boosting
» Summary




k-Nearest Neighbor Classification

» Unlike all the previous learning methods, kNN does not build
the training data.

» To classify a test instance d, define k-neighborhood P as k neare
neighbors of d

» Count number n of training instances in P that belong to class ;
» Estimate Pr(c;|d) as n/k

» No training is needed. Classification time is linear in training set siz
each test case.




KNNAlgorithm

Algorithm KNN(/D. o &)
| Compute the distance between  and every example n [;

2 Choose the & examples in [ that are nearest to o, denote the set by ' 1)
3 Assign o the class that 1s the most frequent class in 7 (or the majority class);

= k1s usually chosen empirically via a validati
set or cross-validation by trying a range of k
values.

= Distance function is crucial, but depends
applications.



Example: k=6 (6NN)

o Gove

® Scien
® Arts

A new p
Pr(scienc



Discussions

» kNN can deal with complex and arbitrary decision boundaries.

» Despite its simplicity, researchers have shown that the classific
accuracy of kNN can be quite strong and in many cases as accu
those elaborated methods.

» kNN is slow at the classification time

» kNN does not produce an understandable model




Road Map

» Basic concepts

» Decision tree induction

» Evaluation of classifiers

» Rule induction

» Classification using association rules
» Naive Bayesian classification

» Nalve Bayes for text classification

» Support vector machines

» K-nearest neighbor

» Ensemble methods: Bagging and Boosting
» Summary




Combining classifiers

» So far, we have only discussed individual classifiers, i.e., how
them and use them.

» Can we combine multiple classifiers to produce a better classif
» Yes, sometimes
» We discuss two main algorithms:
» Bagging
» Boosting




Bagging
s Breiman, 1996

= Bootstrap Agdgregating = Bagging

o Application of bootstrap sampling
= Given: set D containing m training examples

= Create a sample SJi] of D by drawing m examples
random with replacement from D

= S[i] of size m: expected to leave out 0.37 of example
from D




Bagging (cont...)

m Training

o Create k bootstrap samples S[1], S[2], ...,

o Build a distinct classifier on each S[i] to pro
classifiers, using the same learning algorith

= Testing

o Classify each new instance by voting of the
classifiers (equal weights)




Bagging Example

Original 1 12 |3 |4
Training set 1 2 |7 |8 |3
Training set 2 /7 |8 |5 |6
Training set 3 3 |6 (2 |7
Training set 4 4 |5 |1 |4




Bagging (cont ...)

» When does it help?

» When learner is unstable

» Small change to training set causes large change in the output classifier

» True for decision trees, neural networks; not true for k-nearest neighbor,
Bayesian, class association rules

» Experimentally, bagging can help substantially for unstable learners,
somewhat degrade results for stable learners
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Boostin

» A family of methods:
» We only study AdaBoost (Freund & Schapire, 1996)

» Training
» Produce a sequence of classifiers (the same base learner)

» Each classifier is dependent on the previous one, and focuses on the
one’s errors

> Examhples that are incorrectly predicted in previous classifiers are give
weights

» Testing

» For a test case, the results of the series of classifiers are combined to ¢
the final class of the test case.




AdaBoost

Weighted called a weaker ¢
training set \'

(Xq, Y, W,) = Build a class
(X2) Y21 Wo) —_— whose accu

training set >
(Xns Vs W) (better than randg

|

Non-negative weights

sumto 1l
Change weights
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AdaBoost algorithm

Algorithm AdaBoost.M1
Input: sequence of rr examples {{= .91 ).« « o o (T Wore ) )

Initialize D) () = 1/m for all ¢.
Dofort=1.2.....7T:
l.
2.

3.

D

Output the final hypothesis:

. Update distribution Dy

with labels . € Y = {l....=.h}

weak learning algorithm WeakLearn
integer T specitying number of iterations

Call WeakLeam_, providing it with the distribution s,
Giet back a hypothesis fry : X — V.

Calculate the error of hy: € = Z Diii).

eifeql i | F we
Ife: > 1/2, thensetT = £ — 1 and abort loop.

Set Fs = /(1 —€x).
Dt+1(ij — ﬁﬂ ¢ 2 if-’l:[:mzj — ¥

Zs | otherwise

where £ 1s a normalization constant (chosen so that [,
will be a distribution).

1
e ) = arg 11':53_&:&{{_ Z log 7
tha(x)=u



C4.5’s mean error suneal

rate over the
10 cross-
validation.

Bagged C4.5
vs. C4.5.

Boosted C4.5

vs. C4.5.

Boosting vs.
Baqqging

andiology
anto
breast-w
chess
colic
credit-a
credit-g
diabetes
plass
heart-c
heart-h
hepatitis
hypo

iris

labor
letter
lymphography
phoneme
segrment
sick
SOHLAT
sybean
splice
wehicle
wiie
waveform

ETNTLIGE

C4.5 Bagped (4.5 Boosted (4.5 Bosting
vs (4.5 vs 4.5 v= Bapming
err (%) | exr (%) w-l ratio | err (%) w-1 ratic | w-l ratio
7.a7 6.25 10-0 B14 4.73 104 £1T7 | 1040 it
12 19.24 9-0 LAT2 15.71 100 J10 | 100 814
17.66 19.66 2-3 1.113 | 1522 31 S62 | 61 ard
5.28 4.23 9-( a2 4.09 G0 Jra | -2 S66
3.5 3.3 6-2 A7 4.5 1040 437 | 1040 a4l
14.92 15.14 0-6 1018 | 18.83 -1 1262 | (10 1240
14,70 14,13 3-2 HE2 15.64 1-4 1064 | (10 1.1Q7
23.44 25.81 100 A02 | 2614 23 1025 | Q10 1129
25.39 23.63 9-1 H31 | 28.18 ¢-10 1110 | 010 1.1%52
3248 27.01 100 L322 | 2355 1040 J20 | 91 S72
22,04 21.52 7-2 838 | 2139 &0 532 | 34 554
21.53 .31 2-1 843 | 21.05 a4 S73 | F6 1037
20.39 13.52 g1 H08 | 1768 1040 467 | &1 5aa
A3 A3 7-2 S23 2 81 J48 | 81 404
4.3 3.13 2-6 1.069 £.593 10 1361 | O-3 1273
15,12 14.39 100 i 13.36 81 J23 | 93 S63
11.54 781 100 26 4.66 100 289 | 100 621
21.69 .41 3-2 A4 17.43 100 B04 | 10-0 254
15.44 13.73 140 Led | 1636 1040 842 | 1040 S73
2.21 2.7 9-1 B33 1.27 100 A3d | 1040 Had
1.3 1.22 7-1 Sa7 105 1040 Jal | 41 61
25.62 23.30 7-1 L20 | 1562 1040 J66 | 1040 224
.73 7.0 6-3 S8l 7.16 &2 826 | &1 Ba4
.91 0.58 g-1 H43 a.43 G0 S19 | &4 a74
27.04 25.54 100 H43 | 2272 1040 £39 | 100 434
5.06 4.37 9-0 a6 a2.29 +F6 1046 | 19 1211
ar.a 19.77 100 g23 | 18453 1040 £78 | &2 S38
1566 | 1411 AL 163 .&47 kA




Does AdaBoost always work?

» The actual performance of boosting depends on the data and
learner.

» It requires the base learner to be unstable as bagging.
» Boosting seems to be susceptible to noise.

» When the number of outliners is very large, the emphasis placed on
examples can hurt the performance.




Road Map

Basic concepts

Decision tree induction

Evaluation of classifiers

Rule induction

Classification using association rules
Naive Bayesian classification

Naive Bayes for text classification
Support vector machines

K-nearest neighbor

vV v v vV vV vV vV vV VY

Summary




Summary

» Applications of supervised learning are in
any field or domain.

» We studied 8 classification techniques.
» There are still many other methods, e.g.,

» Bayesian networks
» Neural networks

» Genetic algorithms
» Fuzzy classification

This large number of methods also show the importan
classification and its wide applicability.

» It remains to be an active research area.
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