

BASIC CONCEPTS OF MATLAB

SIGNAL PROCESSING

MATLAB VARIABLES

> SCALAR : A=5

> VECTOR : [2,3,4]

> MATRICES:

Z TRANSFORM OF BASIC SIGNALS

u(n)	$\frac{Z}{Z-1}$
u(-n-1)	$-\frac{Z}{Z-1}$
$\delta(n-m)$	z^{-m}
$a^nu[n]$	$\frac{Z}{Z-a}$
$a^nu[-n-1]$	$-\frac{Z}{Z-a}$
$na^nu[n]$	$\frac{aZ}{ Z-a ^2}$
$na^nu[-n-1]$	$-\frac{aZ}{ Z-a ^2}$
$a^n \cos \omega n u[n]$	$\frac{Z^2 - aZ\cos\omega}{Z^2 - 2aZ\cos\omega + a^2}$
$a^n \sin \omega n u[n]$	$\frac{aZ\sin\omega}{Z^2 - 2aZ\cos\omega + a^2}$

Process of Sampling

Sampling of input signal x(t) can be obtained by multiplying x(t) with an impulse train $\delta(t)$ of period T_s . The output of multiplier is a discrete signal called sampled signal which is represented with y(t) in the following diagrams:

Convolute two sequences x[n] = {a,b,c} & h[n] = [e,f,g]

Convoluted output = [ea, eb+fa, ec+fb+ga, fc+gb, gc]

Note: if any two sequences have m, n number of samples respectively, then the resulting convoluted sequence will have [m+n-1] samples.

CORRELATION BETWEEN 2 SIGNALS

$$\int_{-\infty}^{\infty} x_1(t) x_2(t-\tau) dt$$